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Summary

Throughout the last fifteen years, several methods and technologies to sequence the
RNA of cells on an individual level have appeared. Sequencing RNA tells us about
which RNA molecules were present in every single cell, and how many of each mo-
lecule. RNA is transcribed from genes in the genome of an organism, and it is either
translated into proteins, and it perform other functions in the cell. A gene is said to be
expressed in a cell, if the corresponding RNA molecule or protein is present in the cell.
Therefore, by sequencing RNA, we can get an idea of which genes are expressed in a
cell, how it functions, and what state it is in. This field is called single-cell transcrip-
tomics, since the set of all the transcribed RNA molecules is known as transcriptome.
Because there are many genes in a genome, we must also need many cells to model
single-cell transcriptomes. This cause data sets to be both high-dimensional and large,
which can be difficult to analyse.

Concurrently with the evolution of single-cell transcriptomics, machine-learning
methods have also seen tremendous development with the advent of deep learning.
Multiple methods have been successfully applied to large amounts of high-dimensional
data, for instance, to embed data into lower-dimensional representations. Some deep
generative models can be used for this, and as their name suggests, they can also be
used to generate new data either unconditionally or given some constraint. Using these
methods for single-cell transcriptomics could prove useful for reducing the dimension-
ality of the data as well as predicting how the data would look like in another state.

In my two research papers, this was achieved by using variational autoencoders
(VAE) and adversarial autoencoders (AAE), which are separate, but related deep gener-
ative models.

For the VAE approach, four related conditional VAE models (scVAE-C) for integra-
tion and perturbation modelling were developed. In addition to a base model, another
used a normal-mixture model, a third used a hierarchical structure, and fourth used
both. All models performed better at integration than the state-of-the-art VAEs used
for comparison, whereas only the nonhierarchical models were competitive with the
best comparison methods. Overall, the normal-mixture VAE performed the best.

scAAE applies the AAE to single cell transcriptomics. This method was used to
find representations useful for clustering. Because of their adversarial nature, AAEs
can have difficulty in converging to an optimum. Other challenges include parts of the
AAE overfitting or AAEs only generating one kind of data. These issues were addressed
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by implementing an early-stopping scheme using a clustering metric as well as using
noise models. This made scAAE successful and competitive with a state-of-the-art VAE.



Sammenfatning

Gennem de sidste femten år er adskillige metoder og teknologier udviklet, der kan
sekventere RNA indholdet i individuelle celler. Sekventering af RNA fortæller os om
hvilke RNA-molekyler, der var til stede i hver enkel celle. RNA transskriberes fra ge-
ner i genomet for en organisme, og det bliver enten oversat til proteiner, eller det bliver
brugt til andre funktioner i cellen. Et gen siges at være udtryk i en cell, hvis det til-
svarende RNA-molekyle eller protein er tilstede i cellen. Ved at sekventere RNA kan
vi derfor få en ide om hvilke gener, der er udtrykt i cellen, hvordan den fungererer,
og hvilken tilstand den er i. Dette studie bliver for enkeltcellet transkriptomik, efter-
som sættet af alle de transskriberede RNA-molekyler kaldes transkriptomet. Fordi der
er mange gener i et genom, har vi derfor også behov for mange celler til at modellere
enkeltcellet transkriptomik. Dette medfører, at datasæt er både højdimensionelle og
store, hvilket kan være svært at analysere.

Samtidig med udviklingen af enkeltcellet transkriptomik, har maskinlæringsmeto-
der også oplevet en enorm udvikling med fremkomsten af dyb læring. Flere metoder er
med succes blevet anvendt på store mængder højdimensionelle data, for eksempel for
at indlejre data i lavere dimensionelle repræsentationer. Nogle dybe generative model-
ler kan bruges til dette, og som deres navn antyder, kan de også bruges til at generere
nye data. Brug af disse metoder til enkeltcellet transkriptomik kan vise sig nyttig til at
reducere dimensionaliteten af dataene samt forudsige, hvordan dataene ville se under
andre betingelser.

I mine to forskningsartikler blev dette opnået ved at bruge variationelle autoenco-
dere (VAE) og adversarielle autoencodere (AAE), som er separate, men relaterede dybe
generative modeller.

Til VAE-tilgangen blev der udviklet fire relaterede betingede VAE-modeller (scVAE-
C) til integration og perturbationsmodellering. Ud over en basismodel brugte en anden
en normalmikstursmodel, en tredje brugte en hierarkisk struktur og en fjerde brugte
begge dele. Alle modeller klarede sig bedre ved integration end de VAE’er, der blev
brugt til sammenligning, hvorimod kun de ikke-hierarkiske modeller var konkurren-
cedygtige med de bedste sammenligningsmetoder. Samlet set klarede normalmikstur-
VAE’en det bedst.

scAAE anvender AAE til at modellere enkeltcellet transkriptomer. Denne metode
blev brugt til at finde repræsentationer nyttige til klyngedannelse. På grund af deres
kontradiktoriske natur kan AAE’er have svært ved at konvergere til et optimum. Andre
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udfordringer omfatter, at dele af AAE’en bliver overfittet, eller AAE’er, der kun genere-
rer én slags data. Disse problemer blev løst ved at implementere en tidlig-stop-ordning
ved hjælp af en klyngemåling samt ved at bruge støjmodeller. Dette gjorde scAAE suc-
cesrig og konkurrencedygtig med en avanceret VAE.
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Preface

This thesis is the culmination of my PhD programme with the title “Visualisation of
Deep Learning on Biomedical Data for Improved Interpretability”. This project was
also a part of the Marie Skłodowska-Curie Innovative Training Network entitled Ma-
chine Learning Frontiers for Precision Medicine (MLFPM), and it was initially proposed
by Magnus Fontes and Carl-Johan Ivarsson who both are founders of the biotech soft-
ware company Qlucore in Sweden.

During my master’s thesis, I had worked together with a fellow student, Maximil-
lian Fornitz Vording, on a deep generative model for single-cell transcriptomics data
with Ole Winther as supervisor. We both had exchanged physics for mathematical mod-
elling, but by chance, for me at least, we essentially ended up in computational biology.
After our master’s programmes ended, our work resulted in a publication detailing our
method, which was called scVAE.

When the opportunity later arose for me to join Qlucore and MLFPM as well as to
work on the above project with Ole as supervisor, I gladly accepted. I intended to con-
tinue the work on scVAE to extend it to model multiple data sources and to use it for
prediction. However, since I am a data scientist and not a bioinformatician, I was also
connected with Kedar Nath Natarajan, who was an associate professor at the University
of Southern Denmark studying single-cell transcriptomics among other things. Kedar
had worked on a project researching an adversarial alternative to scVAE and similar
methods. We started collaborating on this project, but developing and implementing
this model proved more problematic than I initially thought, since training such mod-
els can be tricky.

In the end, through long days and nights, through trips back and forth between
Denmark and Sweden, through failures and successes, through a pandemic, I ended
up achieving results competitive with the state of the art for both projects as well as a
paper manuscript for each of them. These manuscripts are both included in this thesis
together with a synopsis of my research project as a whole.

With all that being said, I hope you find this thesis interesting and that it sheds
sufficient light on my research project.
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Sources

Both single-cell transcriptomics and deep generative modelling cover a lot of areas.
Many technologies and analyses exists for single-cell transcriptomics, and deep gen-
erative modelling is comprised of a multitude of models. In writing this thesis, I have
therefore tried to focus mostly on aspects of both that are relevant to my research pro-
ject. For this purpose, I have mainly relied on the following sources for each chapter:

• Chapter 1:

– Alberts et al. (2022, Chapter 1) for molecular cell biology.
– Carlberg and Molnar (2016, Chapter 1) for gene expression.
– Lowe et al. (2017) for transcriptomics technologies.
– Lücken and Theis (2019) and Heumos et al. (2023) for transcriptomics ana-

lyses.
– Tomczak (2024, Chapter 1) for deep generative modelling.

• Chapter 2:

– Lafzi et al. (2018) for single-cell RNA sequencing.
– Lücken and Theis (2019) and Heumos et al. (2023) for single-cell transcrip-

tomics analyses.

• Chapter 3:

– Tomczak (2024, Chapters 1, 2, 5, and 8) for deep generative modelling in
general as well as for variational autoencoders and generative adversarial
networks.

– Bishop (2006, Chapters 1 and 9–12) for probabilistic modelling and machine-
learning concepts in general.

• Chapter 4

– Brendel et al. (2022) for deep-learning applications for single-cell RNA-
sequencing data.

– The scRNA-tools database (Zappia et al., 2018) for finding additional applic-
ations.

These sources are also cited more explicitly where applicable. I have assumed some
prior knowledge about biology, machine learning, and probability theory, but if needed,
the above sources are good starting points.

Sections 3.2 and 3.3 adapt some general aspects of the methods sections of Paper A
and Paper B, respectively, but they have been more generalised and expanded, since I
have tried to fill in details not covered in the papers.
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1 Introduction

All known organisms are either single cells or consists of multiple cells. In more com-
plex multicellular organisms, cells differentiate and specialise to have distinct func-
tions such as blood cells transporting oxygen to an organism’s cells. Biologists divide
these specialised cells into different cell types based on function and shape. Cells of re-
lated cell types form tissues which in turn form organs which makes up the organisms
themselves.

How a cell functions is determined by which genes are expressed in the cell. Genes
encode information about an organism as sequences of DNA, and this information con-
cerns how to synthesise proteins (protein-coding genes) or other gene products (non-
coding genes). These syntheses start by transcribing the DNA sequences into different
types of RNA molecules. Protein-coding genes are transcribed into messenger RNA
that each carry a set of encoded instructions from the nucleus of the cell to a ribo-
some that can translate the instructions into a protein. There a many different kinds
of proteins with different functions. Among other things, they can be enzymes, which
catalyse chemical reactions, they can send, transport, or receive molecules around the
body, they can regulate DNA transcription, or they can provide structure to cells. Non-
coding genes are transcribed into RNA molecules that perform various functions such
as helping in the production of proteins as well as regulating this same production. A
gene is expressed in a cell if its gene product is present in the cell, and the abundance
of its gene product determines its expression level.

The sequences of DNA of all genes as well as other DNA sequences are arranged in
a certain way to form DNA molecules, and these genes make up the genome of an or-
ganism. Because the DNA sequences of genes can vary between organisms of the same
species, each organism has a unique set of gene variations (alleles), which is its gen-
otype. This difference in genotype together with differences in environmental factors
and interactions between the two are the reason why traits of an organism, its pheno-
type, vary from another organism.

Each cell nucleus in a multicellular organism contains the genome of that organ-
ism, however, genes are still expressed differently from cell to cell. This is because of
how gene expression is regulated in each cell, and this gene regulation leads to cells
differentiating. As mentioned above, gene regulation could result from interference by
proteins or RNA molecules. This kind of regulation arise from the genome, and regu-
latory regions even exists in the DNA sequences themselves. Even the structure of the
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1.1 Gene-expression experiments 2

DNA molecules can hinder or facilitate the transcription of certain genes. The gene ex-
pression of a cell can also change because of environmental conditions such as diseases
or other outside stimulation.

Biologists study the expressions of genes in cells (gene expression profiles) under
normal conditions and compare them with cells in different states or at different times.
In this way, biologists can learn and discover which genes result in what functions
and how genetic, structural, and environmental factors among others regulate these
genes. For a diseased individual, knowing which gene variations they have relevant to
the disease, medical practitioners could then customise a treatment specific for that
individual – a field called personalised medicine.

1.1 Gene-expression experiments

One way do measure the gene expression is to quantify the RNA transcripts in a cell –
all together called the transcriptome. Since DNA is a more stable molecule than RNA,
RNA is usually reverse transcribed to complementary DNA (cDNA), and methods used
to quantify DNA can then also be used for RNA. At first, genes were detected or quanti-
fied by determining the RNA sequence (sequencing) of random transcripts in a sample
of cells from an organism and mapping the sequences to the genome of the species or
the organism. This was a slow process and required extensive manual labour.

As an alternative, methods that used probes to detect specific genes in a cell sample
were developed. These probes bind to RNA or cDNA molecules matching the specified
genes, and this makes the probes emit light, usually using fluorescence. In this way, the
genes can be detected and the level of their expression can be quantified by measuring
the amount of light emitted. One example is the reverse-transcription quantitative PCR
(RT-qPCR) method (Kubista et al., 2006), which uses the polymerase chain reaction
(PCR) to amplify cDNA and quantifying it by measuring the amplification.

One major disadvantage of most probing methods is that they can only investigate a
small subset of genes at a time. One exception is the microarray (Nelson, 2001), which
consists of thousands of microscopic spots, and each spot can contain a probe for a
specific genes. Because of this, a microarray is able to detect thousands of genes at the
same time – effectively quantifying a known transcriptome in that size range. Coupled
with runtimes of one to two days per experiment, this is why microarray is a popu-
lar choice for transcriptomics. However, since probing methods only test for already
known genes, they cannot be used to identify new genes.

Developments in sequencing DNA lead to methods able to do so in parallel on a
massive scale, which is why such a method is categorised as massively parallel sequen-
cing. This allowed RNA sequencing (RNA-Seq; Wang et al., 2009) to sequence the whole
transcriptome of a cell sample in days or less. Gene expression could then be quanti-
fied by either aligning the RNA transcripts to a reference genome or to each other if
no reference genome existed. Because of this, RNA-Seq is the other popular method for
transcriptomics.
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Until 2009, a significant drawback of RNA sequencing methods was that they could
only quantify gene expression in a sample of cells and not individually (Aldridge and
Teichmann, 2020). Since a cell sample could contain a mix of cells, the gene expression
of the the cell sample would be an average of the these cells, and it would be difficult
to identify specific kinds of cells. Probing methods had been to able to quantify the
expression of specific genes of single cells using RT-qPCR and fluorescence in situ hy-
bridisation (Levsky et al., 2002), but they were still limited in the number of genes they
could detect at a time. As for sequencing methods, further advances of DNA and RNA
sequencing resulted in techniques able to separate cells and sequence them individu-
ally (Sandberg, 2014). These are called single-cell RNA-sequencing (scRNA-seq) meth-
ods, and they lead to single-cell transcriptomics where gene expression of individual cells
are studied.

1.2 Transcriptomics analyses

With gene expression quantified, the next step is usually to determine genes that are
differentially expressed in (samples of) cells of different types or in different states by
comparing their gene expression profiles. This is done with different kinds of statistical
testing. Since there are usually thousands of genes, such analyses can be computation-
ally cumbersome, so several methods have been employed to lower the number used in
the analyses. Some methods rely on filtering the genes. This usually involves removing
genes with little-to-no expression or genes with constant expression (called housekeep-
ing genes) and only keeping genes with expression that varies the most between samples
or cells. Others rely on combining the expressions of multiple sets of genes to a lower
number of features that are used instead of the gene expression levels (Xiang et al.,
2021). Such approaches are different kinds of dimensionality reduction, and they can
only be used for analyses at the cell level. Both of these kinds of methods are of course
not mutually exclusive.

A method often used for dimensionality reduction is principal component analysis
(PCA) (Pearson, 1901). PCA linearly transforms data into a new representation whose
components are computed based on how much variation they capture of the input data.
These are called principal components, and the first principal component captures the
most variation, the second principal component captures the second most variation,
and so on. These principal components are all enforced to be orthogonal to each other,
so they can be used as a coordinate system to visualise the data. PCA is generally used as
the first step of other dimensionality reduction in scRNA-seq analyses (Heumos et al.,
2023).

Another linear approach is factor analysis (Thurstone, 1935). This method supposes
that multiple observed variables can be statistically represented by fewer unobserved
variables (factors) than the number of observed ones. This is done by modelling the
observed variables as noisy combinations of the factors, and these are learnt by fit-
ting such a model to the data. These factors can then be used in place of the observed
variables. Factor analysis have been used for dimensionality reduction for scRNA-seq
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data (Pierson and Yau, 2015) and for other purposes for transcriptomic data from both
microarrays and RNA sequencing (Hochreiter et al., 2006; Risso et al., 2014).

1.3 Deep learning and generative models

The autoencoder (Hinton and Zemel, 1993) is a machine-learning method that can be
used to reduce dimensionality. This method uses artificial neural networks to model
the data: one network called the encoder to transform data to a compressed or lower-
dimensional representation and another network called the decoder to reconstruct the
original data from this representation. Artificial neural networks (Bishop, 2006, Chapter
5), which took their inspiration from biological neural networks, consists of multiple
layers of mostly nonlinear transformations. In machine learning, these are usually just
called neural networks, and we will follow that convention in this thesis. Machine-
learning methods in general have seen tremendous development and successful applic-
ations on large amounts of high-dimensional data in the last decade (Shao et al., 2022).
Advancements in computational power using graphical processing units (GPUs), lead
researchers in 2009 (the same year as the first use of scRNA-seq) being able to prac-
tically train neural networks several layers deep (Raina et al., 2009). Using these deep
neural networks is referred to as deep learning (LeCun et al., 2015). Numerous deep-
learning methods have been developed for transcriptomics (Cheng et al., 2024), and
several autoencoders have been used for scRNA-seq data (Eraslan et al., 2018; Deng
et al., 2019; Wang et al., 2019; Amodio et al., 2019).

The factors of factor analysis are also called latent variables, and factor analysis is
a special case of a latent-variable model where both observed variables and factors are
continuous (Bishop, 2006, Chapter 12). The latent-variable model itself is a kind of gen-
erative model. Generative models are so named because they can be used to generate
new observations given a target value, for example, for a latent variable. This is in con-
trast to discriminative models, which can discriminate between target values given an
observation. Combining generative models with deep-learning approaches has resulted
in deep generative models (Tomczak, 2024).

One popular generative model is the variational autoencoder (VAE; Kingma and
Welling, 2014; Rezende et al., 2014), which uses probabilistic modelling and neural
networks to compress data to a latent representation as well as generate the original
data from this representation. The similarity in structure to the autoencoder method is
why the VAE is called an autoencoder. VAEs have been used to model both bulk RNA-
Seq data (Way and Greene, 2017) and scRNA-seq data (Wang and Gu, 2018; Lopez et al.,
2018; Ding et al., 2018).

The generative adversarial network (GAN; Goodfellow et al., 2014) is another pop-
ular generative model. GANs consist of two neural networks: One network generates
samples from random noise trying to match real samples, and another network tries to
discriminate between the generated samples and the real samples. These networks are
then trained against each other usually until the generator reaches acceptable perform-
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ance. GANs have also been used to analyse both bulk RNA-Seq data (Murchan et al.,
2021) and scRNA-seq data (Gunady et al., 2019; Xu et al., 2020; Zhou et al., 2021).

Large language models (Tomczak, 2024, Chapter 11), or more generally foundation
models, are a recently popular category of generative models. They can predict missing
elements of a sequence based on the other elements of the sequence by paying special
attention to multiple key elements. As their name alludes to, this models consists of a
large number of parameters, so they also require a large amount of data for training.
The generative pre-trained transformer (GPT) models (Vaswani et al., 2017; Radford
et al., 2019; Brown et al., 2020) are examples of this kind of model. Large language
models have also been used for single-cell transcriptomics (Shen et al., 2023; Chen
et al., 2024).

1.4 Research objectives

The overall aim of my research project, which this thesis detail, was to explore and
develop deep generative methods that would be effective at modelling single-cell tran-
scriptomic data. Such methods should be able to learn lower-dimensional represent-
ations of gene expression profiles. The goal of these representation was for them to
replace gene expression profiles themselves either to easier interpret visualisations of
them or for improved performance in downstream analyses.

Various biological data such as clinical and technical information are also often in-
cluded with transcriptomics data (Gagnon et al., 2022). This could, for instance, be
because the transcriptomics data comes from multiple sources, for example, patients.
Gene expression often varies depending on this kind of associated data. Therefore, an-
other purpose of my research project was to investigate and develop methods that use
this additional biological data when modelling single-cell transcriptomics data. One
reason for this was to determine how well methods could remove the variation related
to associated data from their learnt representations. This is referred to as integration, or
data correction when done on the original data (Heumos et al., 2023). Another reason
was to see if it was possible for such a method to take the gene expression profiles of
cells under one set of conditions and generate artificial expression profiles for those
same cells under different circumstances by only changing the associated biological
data. For instance, one could provide gene expressions of cells in a diseased state to
a method and use that method to predict the response in gene expression to different
kinds of treatments. This is one part of perturbation modelling (Heumos et al., 2023).

In this thesis, I give an account of the outcome of my research project. I describe
single-cell transcriptomics and deep generative modelling in relation to my research
in Chapters 2 and 3. In Chapter 4, I present applications of deep generative model-
ling to single-cell transcriptomics, including models that I have developed as part of
my research in collaboration with others. Finally, I conclude my thesis in Chapter 5
by summing up my findings and reasoning about how they can be used for further
research.



2 Single-cell transcriptomics

The aim of single-cell transcriptomics is to quantify the different RNA transcripts in
individual cells. Although this can be done using single-cell gene-probing methods for
organisms with small genomes (for example, using microarrays), the most common
method is single-cell RNA sequencing (scRNA-seq). In scRNA-seq, RNA transcripts of
individual cells are sequenced and used to estimate how much each gene is expressed
in each cell. This is in contrast to traditional transcriptomics techniques that examines
the gene expressions of cells in bulk. Sequencing the transcripts in a pool of cells of dif-
ferent cell types mixes the gene expressions of all the cells together making it difficult
to discern their individual functions. Single-cell transcriptomics has enabled several
new discoveries (Aldridge and Teichmann, 2020).

2.1 Sequencing and quantification

There are many scRNA-seq methods, and most follow the same steps of extracting and
isolating cells, preparing transcripts for sequencing, and the sequencing itself (Lafzi
et al., 2018). These steps are described below.

Cells are first extracted from their environment such as a tissue, and they are then
isolated. This is usually done by placing each cell into one of several small wells ar-
ranged on a plate (Ramsköld et al., 2012; Hashimshony et al., 2012; Gierahn et al.,
2017) or capturing it in a microfluidic droplet (Klein et al., 2015; Macosko et al., 2015).
Droplet-based methods can sequence many more cells simultaneously than methods
using plates, but they are also more costly, so they are more popular in research, while
plate-based methods are still used in clinical environments (Lafzi et al., 2018).

After the cells have been isolated, the transcripts are prepared for sequencing in
a process called library construction. In each well or droplet, the cells are first lysed,
and the desired RNA, typically mRNA, is isolated. The RNA transcripts in each cell are
then reverse transcribed to cDNA, since it is more durable than RNA. Because cells do
not contain enough RNA content to properly sequence, the produced cDNA is ampli-
fied using either PCR or in vitro transcription (IVT; Beckert and Masquida, 2011). The
amplified cDNA is then divided into fragments of the same sequence length, since se-
quencing is limited by the length of the molecules. Finally, these transcript fragments
are pooled together (multiplexed) and sequenced in parallel to allow high throughput.

6
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The sequenced fragments are called reads. Because of the pooling of the fragments,
the reads of all cells mixed up together. Tagging the reverse-transcribed cDNA in each
cell with a cell-specific barcode before amplification, the reads are able to be associated
with individual cells (demultiplexing). The reads can then be aligned to a reference
genome to be able to estimate how many times a gene was read in each cell, thereby
producing read-count data. In the absence of a reference genome, the reads can be
aligned to each other to produce a transcriptome using de novo assembly (Raghavan
et al., 2022).

Due to the amplification of cDNA, it is not possible to determine how many tran-
scripts of a each gene were present in the original cell. This is usually solved by tag-
ging the cDNA from each transcript with a unique molecular identifier (UMI) before
amplification in addition to the cell barcode. By only counting unique reads, the num-
ber of times a gene was expressed in a cell is estimated instead, thereby producing a
transcript-count data. Another way to account for the amplification is to add in so-
called spike-in RNA, which is RNA of known sequence and quantify to use for norm-
alisation during preprocessing.

To ease sequencing and alignment, many methods select only one of the end frag-
ments of each transcript to sequence instead of sequencing all fragments of a tran-
script. This, however, prevents these methods from performing de novo transcriptome
assembly, which is why some methods still perform full-length sequencing.

2.2 Characteristics of scRNA-seq data

The count data resulting from scRNA-seq present several challenges. Some of these
challenges arise from the nature of the data, and some are caused by the processing
before and during sequencing. One complication results from the number of genes.
Genomes consists of thousands of genes in bacteria to tens of thousands of genes in
complex multicellular organisms (Alberts et al., 2022). The human genome contains
around 20000 protein-coding genes and at least 17000 noncoding genes as an example
(Amaral et al., 2023). Because of this, scRNA-seq data are high-dimensional. This makes
some analyses cumbersome or even impossible to perform.

Even with an abundance of genes, each cell typically only expresses about half of
them (Carlberg and Molnar, 2016, Chapter 1). Since sequenced cells usually are of dif-
ferent cell types, it will also differ which subset of genes are expressed in each cell.
Additionally, cells will also be in different states of the cell cycle or even dying result-
ing in more differences of gene expression (Lücken and Theis, 2019). This all results
in scRNA-seq data being sparse, which can make it more difficult to discern patterns
in the data. The differences in gene expression as well as the multilevel interactions
between genes as part of gene regulation (Carlberg and Molnar, 2016, Chapter 1) fur-
ther complicates pattern recognition.

Another source of sparseness is due to some RNA transcripts not being sequenced
even though they were present in the cell (Lücken and Theis, 2019). These are called
technical dropout events. Ambient RNA from other cells lysed during extraction of the
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cells can also be captured together with a particular cell and be mistaken as coming
from that cells (Heumos et al., 2023). Because of ambient RNA, empty droplets will still
be measured as having some genes expressed, causing more sparseness. For droplet-
based methods, it can also happen that no cell is captured in a droplet or that two
or more cells (doublets or multiplets, respectively) are captured. As for doublets or
multiplets, these can be mixtures of different cell types, making it difficult or even
impossible to disentangle the gene expressions of each cell (Heumos et al., 2023).

As a result of the high dimensionality as well as the complexity of the data, a large
number of cells is needed to be able to achieve enough statistical power to discern if a
particular result is true or false (Angerer et al., 2017). Droplet-based methods enable
sequencing thousands of cells at a time, and usually experiments are performed in
batches to sequence even more cells, resulting in data sets consisting of up to millions
of cells (Lafzi et al., 2018). As with high dimensionality, large data sets are can also be
difficult to analyse.

scRNA-seq data will also include information about experiment batches as well as
experimental details such as how and when cells were treated or stimulated. Addition-
ally, clinical information like donor ID, age, sex, or disease state can be provided if cells
differ in this way (Gagnon et al., 2022).

2.3 Preprocessing steps

Because of the complications mentioned in §2.2 as well as others mentioned below,
scRNA-seq data needs to be preprocessed before performing most analyses, and this is
done in multiple steps of quality control, normalisation, log-transformation, and data
correction detailed below (Lücken and Theis, 2019).

2.3.1 Quality control

At first, low-quality cells and empty droplets as well as doublets and multiplets are
removed based on certain quality-control metrics. Since the number of cells associated
with a barcode can vary, these metrics are formulated in terms of the barcode (Lücken
and Theis, 2019). The metrics include the total number of transcripts or reads per bar-
code (called the count depth or the library size), the number of genes detected per
barcode, as well as the fraction of transcripts of reads from mitochondrial genes per
barcode (Lücken and Theis, 2019). Barcodes with low count depth, few genes detected,
and a high mitochondrial fraction are usually deemed to be low-quality cells or empty
droplets (Lücken and Theis, 2019). On the other hand, barcodes with unusual high
count depths are typically considered to be doublets or multiplets (Lücken and Theis,
2019). These can also be detected using dedicated methods (Germain et al., 2021; Kang
et al., 2018). In addition to filtering cells, genes that are only detected in a few cells are
also removed (Lücken and Theis, 2019).
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2.3.2 Normalisation and log-transformation

Because not all RNA transcripts are evenly prepared and sequenced within an experi-
ment batch, the gene expression will vary between even identical cells. Therefore, the
counts of each cell are normalised by a certain size factor. This size factor can simply
be the count depth of each cell or it can be more differentiated to account for the dif-
ferences in, for instance, cell size between cell types or cell-cycle states. (Heumos et al.,
2023)

For scRNA-seq methods that sequence the full length of transcripts, an additional
normalisation is performed. Since the transcript fragments all have the same length,
and since genes vary in sequence length (Alberts et al., 2022, Chapter 1), a gene that
has a sequence twice as long as another, will also have about twice as many fragments
aligned to it, if they are expressed in the same amount. Therefore, the number of reads
aligned to each gene are normalised by the sequence length of that gene (Lücken and
Theis, 2019).

After normalisation, the transcript count data is generally shifted by +1 and log-
transformed: log(x + 1), where x represents a transcript count. This is to reduce the
relationship between the mean and the variance of the data as well as the skewness
of the data. Traditionally, gene expression levels were also expressed as logarithm fold
changes, and many analyses expect that as their input. (Lücken and Theis, 2019)

2.3.3 Data correction

Combining data from multiple experiment batches complicates data sets further. This
is because each experiment will be different due to random differences in the setup
(Lücken and Theis, 2019). To remove this technical variation, several batch-correction
methods exist (Büttner et al., 2019). Some of these methods rely on modelling the gene
expression with the batch contribution as a covariate thereby regressing out its effect
(Büttner et al., 2019).

In addition to integrating different batches of an experiment, different data sets
can also be integrated. This is done when constructing single-cell atlases for instance
(Hrovatin et al., 2025). However, the more different the compositions of the data sets
are, the more difficult they will be to integrate because of their heterogeneity. Therefore,
dedicated methods for integrating scRNA-seq data sets have been developed (Butler
et al., 2018; Korsunsky et al., 2019).

Variation due to biological effects can also be controlled for using regression. This
can, for example, be high mitochondrial content, which could be caused cell stress, or
cell-cycle effects. However, one should be wary of removing biological effects, since
they can be informative and used to explain other biological effects. Because of these
interdependencies, covariates should always be regressed out together. (Lücken and
Theis, 2019)

Data acquired using droplet-based methods, can also be corrected for ambient RNA.
Since empty droplets would only contain ambient RNA, the gene expressions for these
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can also be used to remove the contribution of ambient RNA to the gene expressions in
other cells. (Heumos et al., 2023)

Methods also exist for correcting dropout events by inferring counts either from
the data themselves or from reference data. These methods involve both determining
whether a zero count is a dropout event or an actual zero as well as estimating the ex-
pression level in the former case. One should, however, exercise caution when inferring
counts, since it could amplify noise in the data. (Lücken and Theis, 2019)

2.3.4 Feature selection

Because of the high dimension and the sparseness of the data, genes are typically
filtered to only keep only the most relevant ones. Genes that are only expressed in a
few cells have already been removed during quality control, but many genes generally
remain. Since the purpose of transcriptomics is to explain differences in gene expres-
sion between cells, the most relevant genes are those that vary much from cell to cell.
These genes are referred to as highly variable genes, and there exist several methods to
select these (Satija et al., 2015; Zheng et al., 2017; Stuart et al., 2019). By only keeping
highly variable genes, housekeeping genes are also removed. (Heumos et al., 2023)

2.3.5 Dimensional reduction

For analyses that do not require gene-level information (Lücken and Theis, 2019),
scRNA-seq data can be further compressed using dimensionality-reduction methods.
Analyses that could benefit from dimensionality reduction suffer from the curse of di-
mensionality. This phenomena occurs because the volume of a given data space grows
exponentially with the dimensionality of the space, and to have enough data points to
cover the volume, one would then need a exponentially large amount of data, otherwise
the data become sparse. For analyses that rely on distances between data points, this
becomes a problem, because if the data are sparse, the distances between them will be
similar to each other. (Bishop, 2006, §1.4)

Even though data can be high dimensional, it can sometimes in reality occupy a
much smaller space of a lower dimensionality. Some dimensionality-reduction methods
attempt to find this space by projecting the high-dimensional data into a space of as few
dimensions as possible while still retaining its overall structure. (Bishop, 2006, §1.4)

Since scRNA-seq data are sparse, methods to reduce its dimensionality for relevant
analyses have been employed. Principal component analysis (PCA) is typically used,
but factor analysis have also proven useful (§1.2). Dimensionality-reduction methods
can also be used to visualise data and are discussed below.

2.4 Analyses

scRNA-seq data can be analysed in many ways, and analyses are performed on the
level of genes, cells, or both (Lücken and Theis, 2019). They are usually implemented
as software tools or libraries in the programming language R or Python and available
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via Bioconductor or the Python Packaging Index (Zappia et al., 2018), respectively, or
they are part of multifunctions software tools such as Seurat (Satija et al., 2015) and
Scanpy (Wolf et al., 2018). Below are described types of analyses relevant to my research
project.

2.4.1 Differential-expression analysis

To distinguish cells of different cell types or in different states and find genes that vary
in expression between them, differential-expression analysis is performed. This con-
sists of different statistical tests. To be able to capture as much biological variation as
possible, it is recommended that differential-expression analyses are performed using
the raw count data (that is, the data before normalisation and correction). The differ-
ent covariates should instead be modelled directly in the analyses. (Lücken and Theis,
2019)

2.4.2 Visualisation

Gene expression data can be visualised in many ways such as using a heat map to show
gene expression of each gene for each cell. However for scRNA-seq data, this is only be
tenable for smaller data sets after feature selection. Therefore, to visualise the structure
of the data, one of several dimensionality-reduction methods are used. PCA can be
used for this task, but because of its linear nature, it is unable to capture more complex
patterns in the data (Lücken and Theis, 2019). For this reason, nonlinear approaches
are instead preferred.

Two of the most popular methods for visualising scRNA-seq data (Lücken and
Theis, 2019) are t-distributed neighbourhood embedding (t-SNE; van der Maaten and
Hinton, 2008) and uniform manifold mapping and projection (UMAP; McInnes et al.,
2020). Both methods rely on constructing a network graph of its k-nearest neighbours
(Fix and Hodges, 1951) by computing a distance matrix between the gene expression
profiles of the cells using a specified distance metric. t-SNE uses this graph to embed
the data into a two- or three-dimensional space aiming to preserve the local structure
of the data, whereas UMAP also attempts to maintain the global structure. UMAP is
also faster to run than t-SNE and able to scale to larger data sets (Becht et al., 2018).

Even though these methods are effective at reducing data to two or three dimen-
sions, these representations should not be used for other analyses, since the intrinsic di-
mension of the data is most often higher (Lücken and Theis, 2019). Furthermore, since
t-SNE only focuses on local similarity in the neighbourhood graph (van der Maaten and
Hinton, 2008), distances between cells can be distorted, especially for cells fart apart
in gene-expression space. A similar effect is observed for UMAP, despite its additional
focus on global structure (McInnes et al., 2020).
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2.4.3 Clustering

Another way to distinguish cells or to determine genes with differences in expression is
to cluster them. Clustering can be performed on the gene-level, the cell-level, or even
both (Lücken and Theis, 2019).

Genes are usually clustered using hierarchical clustering (Nielsen, 2016, Chapter 8).
This kind of method works either from the top-down or the bottom-up. The top-down
approach starts with one cluster that is split into smaller clusters based on differ-
ences between data points recursively until little difference remain in each cluster.
Conversely, the bottom up approach works by collecting data points into clusters and
clusters in to larger clusters based on similarity. Genes and cells can also be clustered
together this way using biclustering (Fang et al., 2021).

On the cell level, dimensionality-reduced data are typically used. A simple ap-
proach to clustering is k-means clustering (Lloyd, 1982), which divide the data into
k clusters in an iterative process. First, the centres of the clusters (the centroids) are ini-
tialised randomly. Then, data points are assigned to the cluster of the nearest centroid,
and the centroid of each cluster is computed as the mean of the data points assigned
to that cluster. This is repeated until equilibrium. For scRNA-seq, different distance
metrics have been used (Wang et al., 2017; Haghverdi et al., 2018; Kim et al., 2019).

A more recent approach for cell-level clustering is community detection. This ap-
proach work on network graphs by finding structures whose members are densely con-
nected. For scRNA-seq data, a k-nearest neighbours graph is used (Lücken and Theis,
2019). Two popular methods for community detection are the Louvain method (Blondel
et al., 2008) and the Leiden method (Traag et al., 2019), which is an improvement upon
the former method.

Once clusters have been formed, they can be annotated by marker genes. These are
genes that are indicative of a certain cell type and can be looked up in reference data-
base (Heumos et al., 2023).

2.4.4 Perturbation modelling

As mentioned in Chapter 1, one can infer gene functions by measuring similar cells un-
der different conditions, which are also called perturbations. These perturbations can
be investigated experimentally by measuring gene expressions from differently per-
turbed cells and predicting the perturbation from the gene expressions. Conversely,
one can model the gene expression for unperturbed and perturbed cells and then try
to predict perturbed gene expression profiles from unperturbed cells. This can, for ex-
ample, by done using deep generative modelling. (Heumos et al., 2023)



3 Deep generative modelling

Suppose we have a set of observations, represented by a matrix X, where each observa-
tion, represented by a N -dimensional column vector x ∈ XN , have an associated label
y ∈ Y . X can be images, text, or experimental measurements such as gene expression
profiles, and an appropriate data space XN will be chosen depending on the kind of
data. Y can, for instance, be a categorisation of certain kinds of subjects or objects such
as cell types. If we want to predict the class y∗ of some new observation x∗, we can find
a function f (x) to do so directly: y = f (x). Here, f (x) is called a discriminative function,
since it is a function to discriminate between classes. Since f (x) maps a observation
x directly to a class y, however, the model cannot express any uncertainty about this
assignment.

Instead of a deterministic approach, we can instead model the probability distri-
bution of y conditioned on x, p(y |x). By representing the probabilities of each class in
Y given a observation x as a vector function π(x), we can, for example, parameterise
p(y |x) using a linear model: π(x) = Wx + b + ϵ with a weight matrix W, a bias vector b,
and some noise ϵ. The output of π(x) would then be a probability vector, whose com-
ponents are between 0 and 1, inclusive, and all sum to 1. A neural network with K
layers can also be used (Bishop, 2006, Chapter 5):

π = aK , ak = hk(Wkak−1 + bk), a0 = x, (3.1)

where ak and hk(·) are the activation and the activation function of the kth layer of
the neural network, respectively. We can then optimise the parameters of the model to
obtain the most likely parameters that predict the correct label for a given observation.
p(y |x) is called a discriminative model.

However, observations are just that: observations about the world, and observations
of the same phenomenon differ. No images are alike, a thousand words about an image
are seldomly written in the same way, and cells of the same cell type can vary in gene
expression. Because of this randomness, we treat the observations as samples x from a
probability distribution of the data. To include the randomness of the observations in
a model, we can model the observations together with the labels in a joint probability
distribution p(x, y). Using the product rule, p(x, y) can be factorised in one of two ways:

p(x, y) = p(y |x)p(x) = p(x |y)p(y). (3.2)

Here, p(x) and p(y) are the marginal probability distributions of the observations and
labels, respectively, and they can be obtained using the sum rule. As an example, the
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marginal distribution of x can be obtained by summing over (or marginalising out) y:

p(x) =
∑
y

p(x, y). (3.3)

p(x, y) is called a generative model, because we can use it to generate new (x, y) pairs
by sampling from it. By using the second factorisation in equation (3.2) and estimat-
ing p(x |y), we can even generate new observation given a certain class. With the first
factorisation, we get a discriminative model that also models the uncertainty of the
observation. We can again parameterise these models using linear models or neural
networks, for instance, and then optimise the parameters, but because of the different
factorisation and marginalisations, we can also estimate them from each other.

The marginal distribution p(x) is an estimate of the data distribution of x. However,
since we only have a discrete number of observations or samples from the data distri-
bution, we are, in fact, not directly estimating the true data distribution, but rather the
empirical data distribution:

pD(x) =
1
M

M∑
m=1

δ(x− xm), (3.4)

where D = {x1,x2, . . . ,xM} are the observations, M is the number of observations, and
δ(t) is the delta function. Thus, pD(x) will be 1

M when x is an observation, and 0 oth-
erwise. We can use p(x) to better express how these observations are distributed in the
data space, for example, where observations are more or less concentrated, as well as
quantify the uncertainty of the observations. We also aim for our model to general-
ise well to unseen data, so we can use the marginal distribution p(x) to estimate the
probability of an unseen observation as well as its uncertainty.

The models above have been introduced in a supervised setting, where the labels
y are freely available together with the observations x. However, labels can be hard
to come by, so the models can also be formulated without labels in the unsupervised
setting. For generative models, this means only estimating p(x), whereas one can, for
example, introduce surrogate labels for the discriminative models. There is also the
semi-supervised case, where only some observations have labels assigned. Additionally,
a model being discriminative does also not prevent it from being generative or the
reverse, as it can contain aspects of both as we saw above. As with all categorisation,
it is useful being able to distinguish between items to be able to discuss related items
separately and characterise them.

With that being said, there are also different kinds of generative models. By us-
ing deep neural networks to parameterise them, we enable these models to become
more flexible in their expression. The result is deep generative models, and they can
be divided into the following classes (Tomczak, 2024): latent-variable models, which use
latent variables to model observations; generative adversarial networks, which use one
neural network to generate samples and another to discriminate between generated
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samples and observations; energy-based models, which model observations and option-
ally latent variables together using energy functions; flow-based models, which use in-
vertible transformations to map observations to a latent representation and back again;
autoregressive models, which predict observations or their components by other obser-
vation or components coming before them; score-based models, which model the score
function, ∇x logp(x), rather than the p(x), and large language models as described in §1.3.

The overall goal of my research project was to model data to learn a lower-dimen-
sional representation and optionally use this representation to predict how data would
look like given a perturbation. Therefore, generative models seem like a good fit. Latent-
variable models, energy-based models, and flow-based models are all capable of rep-
resenting observation using latent variables. However, flow-based models require the
invertible transformations to be of the same dimensionality, and energy-based models
are slow to compute, especially for high-dimensional data. Language models can also
represent data in embeddings (Tomczak, 2024, Chapter 11.2), but since they require
large amounts of data to train, they were not considered for this project. Latent-variable
models remain, and one such model that has been proven to produce interpretable rep-
resentations is the variational autoencoder (Kingma and Welling, 2014; Rezende et al.,
2014)), which is based on variational inference (Bishop, 2006, §10.1). A related model
that instead is based on generative adversarial networks (Goodfellow et al., 2014) is the
adversarial autoencoder (Makhzani et al., 2016).

I have used both variational autoencoders and adversarial autoencoders in my re-
search, so I will focus on these models below. But since generative adversarial networks
can also be seen as a latent-variable model, I will first outline latent-variable models.

3.1 Basics of latent-variable models

The aim of latent-variable models is to represent the observations x ∈ XN in terms of
another variable z ∈ ZL. Since z is not observed, it is called a latent variable. For the
latent variable to capture higher-order features of x, the dimension L of z is selected
to be lower than dimension N of x, L < N . Additionally, the latent space is usually
chosen to be real valued, Z = R, and we will do so as well here. The joint probability
distribution of x and z, parameterised by θ, is factorised in the following way:

p(x,z |θ) = pθ(x,z) = pθ(x |z)pθ(z), (3.5)

where pθ(x |z) is the likelihood function, which measures how likely that z would give
rise to an observation x. pθ(z) is called the prior distribution of z, since it it the distri-
bution that z is assumed to follow without any prior information about the data. All
distributions are not necessarily parameterised, but we leave the option open for them
to be so. Since z is unobserved, we marginalising it out (by integration, since z ∈ RD ) to
get the marginal likelihood function:

pθ(x) =
∫

pθ(x,z)dz =
∫

pθ(x |z)pθ(z)dz. (3.6)
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Thus, we arrive at a probability distribution for x in terms of the latent variable z and
the parameterisation θ.

To estimate θ, we can maximise the marginalised likelihood function over all ob-
servations, pθ(X), to find the parameters that most likely give rise to the observations.
This is called maximum-likelihood estimation. By assuming that the observations are
independent and identically distributed, pθ(X) can be factorised as pθ(X) =

∏
mpθ(xm),

where xm is an observation in the data set X. The maximum-likelihood estimate of θ is
then

θML = argmax
θ

pθ(X) = argmax
θ

∏
m

pθ(xm). (3.7)

If pθ(xm) is small, the product will be even smaller, and this can cause pθ(X) to be too
small to be represent by, for example, a computer. Since the logarithm is monotonic-
ally increasing function, it does not change the maximum. Therefore, the logarithm is
usually computed instead:

logpθ(X) =
∑
m

logpθ(xm). (3.8)

With θ estimated, z can then be determined by factorising p(x,z) the other way and
isolating p(z |x):

pθ(z |x) =
pθ(x |z)pθ(z)

pθ(x)
=

pθ(x |z)pθ(z)∫
pθ(x |z)pθ(z)dz

, (3.9)

which is Bayes’s rule, and where pθ(z |x) is called the posterior distribution, since it
characterises the distribution of z after adapting information about the observations.
This gives us a way to compute the most likely value for z given the data. However, this
is not straightforward is most cases.

As an example, take the factor analysis as mentioned in §1.2. In factor analysis,
there is a linear relationship between x and z: x = Wz+b+ϵ, where W is a weight matrix,
b is bias vector, and ϵ is some unknown noise. Usually, the noise is modelled as Gaus-
sian noise, ϵ ∼ N (ϵ;0,Ψ), and pθ(z) is a standard normal distribution, z ∼ N (z;0,I).
Thus, the parameters are θ = (W,b,Ψ), and we can determine these using maximum-
likelihood estimation. For factor analysis, equation (3.9) only has an analytical solution
when the Gaussian noise is isotropic Ψ = σ2I. This model is called probabilistic PCA,
since it is similar to principal component analysis. (Tipping and Bishop, 1999)

3.1.1 Approximating the marginal likelihood

For factor-analysis models other than probabilistic PCA and for latent-variable models
in general, the integral in equation (3.6) is intractable, and we have to resort to other
methods to approximate a solution (Tomczak, 2024). One way is to formulate the integ-
ral as an expectation of pθ(x |z) with regards to pθ(z) and approximate the expectation
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with a sum over R samples z(r) from pθ(z):

pθ(x) =
∫

pθ(x |z)pθ(z)dz = Epθ (z)[pθ(x |z)]

≈ 1
R

∑
r

pθ(x |z(r)), z(r) ∼ pθ(z).
(3.10)

This is called Monte Carlo integration (Bishop, 2006, Chapter 11), and usually few
samples are needed for this approximation. With an approximation of pθ(x), we can
use maximum-likelihood estimation to estimate θ. However, since we use z(r) ∼ pθ(z)
to compute pθ(x |z(r)), we have to take into account where the masses of both distribu-
tions are concentrated. For instance, if most samples from pθ(z) are in a region where
pθ(x |z(r)) is low, we will underestimate pθ(x). We would then need to increase the num-
ber of samples to cover enough of ZL to get a proper estimation of pθ(x). Even though
L < N , L is still usually large, and then the curse of dimensionality can befall us.

The expectation-maximisation algorithm (Bishop, 2006, Chapter 9) is another method
to determine θ. As the name alludes to, this method consists of two steps: expectation
and maximisation, and these steps are alternated in an iterative manner. Instead of a
single-observation joint distribution in equation (3.6), we consider the joint distribu-
tion over all observations X and the latent variables Z, pθ(X,Z). In the expectation step,
we then compute the expectation of logpθ(X,Z) with regards to the posterior distribu-
tion pθ(t)(Z |X) using parameters θ(t) at iteration t:

Q(θ;θ(t)) = Ep
θ(t) (Z |X)[logpθ(X,Z)]. (3.11)

Next, in the maximisation step, Q(θ;θ(t)) is maximised with regards to θ to estimate
θ(t+1):

θ(t+1) = argmax
θ

Q(θ;θ(t)). (3.12)

These steps are alternated until convergence, and it can be shown to maximise the (mar-
ginal) log-likelihood function (Bishop, 2006, §9.4). The posterior distribution can be
estimated using equation (3.9), but when the distributions use complicated functions
such as neural networks, it becomes intractable to compute the posterior distribution.
Additionally for large data sets, computing the expectation inQ(θ;θ(t)) can also become
cumbersome.

Another iterative approach for estimating θ is gradient descent (Bishop, 2006, §5.2.4).
In this method, the gradient of pθ(x) with regards to θ is used to steps closer to the op-
timal value. There exists many different optimisation algorithms, but one popular tech-
nique is stochastic gradient descent. In each iteration, this technique only uses a random
subset of observations to compute the gradient. This subset is commonly referred to as
a batch or a mini-batch for smaller subset. To differentiate from experiment batches in
single-cell transcriptomics, we will use the latter term in this thesis. This mini-batch
could be just one observation, and usually it is ensured that all observations have been
used to update the gradient before being used again. Because of this mini-batch scheme,
stochastic gradient descent can easily scale to large amounts of data.
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3.2 Variational autoencoder

The variational autoencoder (VAE; Kingma and Welling, 2014; Rezende et al., 2014)
is a latent-variable model parameterised with neural networks, and it uses variational
inference (Bishop, 2006, §10.1) to solve the integration in the computation of the mar-
ginal likelihood in equation (3.6). This results in an approximate posterior distribution,
which stochastically compresses observations to latent representations. The likelihood
function can then use the latent representations to stochastically reconstruct the the ob-
servations. Finally, the prior distribution is used to constrain the approximate posterior
distribution. Because of the structure of compression and reconstruction, it was likened
to an autoencoder with the approximate posterior distribution acting as a stochastic en-
coder and the likelihood function acting as a stochastic decoder. Though, compared to
an autoencoder, which learns point estimates of latent representations and the recon-
structed observations, the VAE learns probability distributions for both.

I will not derive the variational autoencoder in full here. For an example of that,
I refer to Paper A (Appendix A.1), which concerns conditional and hierarchical VAEs
for use with single-cell transcriptomics data. Below, I will instead outline some general
aspects of VAEs.

3.2.1 Variational inference

To solve the integral in equation (3.6) when the posterior distribution pθ(z |x) is intract-
able, variational inference introduces qφ(z), which is called a variational distribution,
and which is parameterised by φ. Since pθ(x) does not depend on z, the expectation
of pθ(x) with regards to qφ(z) is just pθ(x). Therefore, we can introduce qφ(z) into the
logarithm of the marginal likelihood function in the following way:

logpθ(x) = Eqφ(z)[logpθ(x)] =
∫

qφ(z) logpθ(x)dz

=
∫

qφ(z) log
pθ(x,z)
pθ(z |x)

dz

=
∫

qφ(z) log
(
pθ(x,z)
pθ(z |x)

qφ(z)

qφ(z)

)
dz

=
∫

qφ(z) log
qφ(z)

pθ(z |x)
dz +

∫
qφ(z) log

pθ(x,z)
qφ(z)

dz

= KL
[
qφ(z)

∥∥∥pθ(z |x)
]
+ Eqφ(z)

[
log

pθ(x,z)
qφ(z)

]
.

(3.13)

Here, the first term in the last expression is the relative entropy or the Kullback–Leibler di-
vergence (KL divergence; Kullback and Leibler, 1951) between the variational distribu-
tion and the posterior distribution. The Kullback–Leibler divergence KL[Q ∥P ] between
two distributions, Q and P , measures how much more information is needed to model
samples of Q when P is used instead, on average (Bishop, 2006, §1.6.1). The KL di-
vergence is asymmetric as can be seen from equation (3.13), and KL[Q ∥P ] ≥ 0 with
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equality only when Q = P . Because of this, and since the posterior distribution is as-
sumed to be intractable, we can at least get a lower bound, L, on logpθ(x):

logpθ(x) ≥ L(θ,φ;x) = Eqφ(z)

[
log

pθ(x,z)
qφ(z)

]
= Eqφ(z)

[
logpθ(x |z)−

qφ(z)

pθ(z)

]
= Eqφ(z)[logpθ(x |z)]−KL

[
qφ(z)

∥∥∥pθ(z)
]
.

(3.14)

L(θ,φ;x) is called the variational lower bound. Since the marginal likelihood is also
known as the evidence (Bishop, 2006, §3.4), L(θ,φ;x) is also referred to as the evidence
lower-bound objective (ELBO). The first term in the last expression can be interpreted as
a negative reconstruction error of x, while the other term is another KL divergence.

To learn the variational distribution qφ(z), it is traditionally conditioned on each ob-
servation, and therefore, we would need to estimate different parameters of this vari-
ational or approximate posterior for each observation, which can become impractical.
Instead, qφ(z) can be conditioned on x, so we only need to learn one variational distri-
bution for all observations: qφ(z |x). Conditioning on x in this way is called amortisa-
tion, since the cost of learning of the parameters is amortised over all observations. This
kind of variational inference is therefore called amortised variational inference (Ganguly
et al., 2023), which variational autoencoders generally use.

3.2.2 Tricks to training

By combining equations (3.7) and (3.14) with qφ(z) = qφ(z |x), we can now use maximum-
likelihood estimation to determine θ using a variational autoencoder. When the vari-
ational lower bound is maximised, the reconstruction error is minimised, the KL di-
vergence is minimised, or both are minimised. Minimising the reconstruction error in
the absence of the KL divergence, the approximate posterior is unconstrained and can
overfit to the observations. Therefore, the KL divergence can be seen as regularising the
variational lower bound.

Since a VAE parameterises its distributions using neural networks, however, the
reconstruction error and the KL divergence become intractable like the marginal like-
lihood (equation 3.6) itself. All this and nothing gained? Not quite. We turn to Monte
Carlo integration again, but instead of sampling from the prior p(z), samples now come
from the approximate posterior qφ(z |x). Since the approximate posterior is amortised
by x, we are more likely to draw samples of z where likelihood pθ(x |z) is high, thus
more easily dodging the curse of dimensionality. Usually, one only needs one sample
(Kingma and Welling, 2014)!

With Monte Carlo samples drawn, we then perform maximum-likelihood estima-
tion using gradient descent. However, the gradient of the variational lower bound for φ
is problematic to compute. This is because the expectation of the reconstruction error
as well as the KL divergence are evaluated with regards to qφ(z |x), which is dependent
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on φ. Instead, qφ(z |x) can be reparameterised such that the stochasticity is independ-
ent of φ. For z ∼ qφ(z |x), z could instead be obtained using z = gφ(ϵ,x), where gφ(·) is
an appropriate function parameterised by φ, and where ϵ is an independent random
variable. This is called the reparameterisation trick (Kingma and Welling, 2014).

In addition to making it possible to train a VAE by using these techniques, they also
make it easy to sample from the model as well.

3.2.3 Freedom of choice of distributions

Variational inference does not impose many limitations on the choice of distributions
used for the likelihood function or the prior distribution, or the approximate posterior
distribution. They only need to be tractable, and the approximate posterior distribution
should be a good approximation of the true posterior distribution (Bishop, 2006, §10.1).
Because variational autoencoders also model these distributions with neural networks,
variational autoencoders are very flexible in their modelling. But with almost unlimited
choice, how do we choose and how do we choose well?

Since the latent space is typically chosen to be real valued, and for simplicity, the
prior pθ(x) is usually chosen to be a standard normal distribution: p(z) = N (z;0,I).
However, a problem can occur for the aggregated approximate posterior, which is the
average approximate posterior over all observations:

qφ(z) =
1
M

∑
m

qφ(z |xm). (3.15)

If qφ(z) differs significantly from the prior, we risk sampling z from the prior with
high probability in a region where qφ(z) is low, or the reverse. Thus, we would end
up with many latent representations not matching those inferred from x and few that
do. That would result in poor reconstructions and even poorer samples from the like-
lihood function. This is known as the hole problem (Rezende and Viola, 2018), since
mismatched regions look like holes in visualisations of the latent representations. This
mismatch between the prior and the approximate posterior is what the KL divergence
measures. Since it is minimised during optimisation, the mismatch will also be minim-
ised, and the approximate posterior will be constrained by the prior. The hole problem
is more pronounced when the prior is a fixed distribution, and it can be alleviated by
using more flexible and learnable priors such as mixture distributions (Tomczak, 2024,
§5.4.1). Examples of these are a normal-mixture model (Dilokthanakul et al., 2016)
and a variational mixture of posteriors (VampPrior; Tomczak and Welling, 2018). Ap-
proaches based on flows can also be used to achieve a flexible prior (Tomczak, 2024,
§5.4.1.8).

To match the prior, the approximate posterior distribution qφ(z |x) is also generally
modelled using a normal distribution. Again for simplicity, this normal distribution
has a diagonal covariance matrix, and the dependence on x is achieved by letting the
mean and variance be functions of x: qφ(z |x) = N (z;µφ(x),σ2

φxI). These distribution
parameters are then both modelled using neural networks as in equations (3.1). Since
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optimising the variational lower bound L(θ,φ;x) does not depend on z, the quality of
the latent representation is not necessarily maximised by this optimisation (Huszár,
2017). In fact, if the likelihood function is able to model x without z, then it would
ignore the approximate posterior, which would then be forced to match the prior be-
cause of the KL divergence (Rubenstein, 2019). This is called posterior collapse (Bowman
et al., 2016). One way to avoid this is to use a more flexible distribution for the approx-
imate posterior that more closely match the true posterior. Instead of using a diagonal
covariance matrix for a normal distribution, we could use a full covariance matrix, for
instance. Flow-based methods have also been developed to transform a diagonal nor-
mal distribution to more a complex distribution for use as an approximate posterior
(Tomczak and Welling, 2016; van den Berg et al., 2018).

Since the likelihood function pθ(x |z) is used to model x, an appropriate distribution
approximating the empirical distribution of x is chosen. The parameters of this distri-
bution are then modelled as functions of z using neural networks. If it is not clear what
the most appropriate distribution is, one can try out different distributions and choose
the one that obtain the highest variational lower bound. One could even perform, for
example, factor analysis using different distributions beforehand to select one or mul-
tiple candidates.

3.2.4 A variety of variational autoencoders

Because of their popularity, variational autoencoders exist in many different flavours
to adapt to the local field of study (Gómez-Bombarelli et al., 2018; Cerri et al., 2019;
Oibayashi et al., 2021) and to improve their performance overall (Burda et al., 2015;
Higgins et al., 2017; Dai and Wipf, 2019). Some of these variations have already been
mentioned in passing above. Here, I highlight a few more methods relevant to my re-
search project. For variants applicably specifically to single-cell gene expression, see
§4.1.

One purpose of my research project was to use additional information about the
observations to better model the observations. This can, for example, be achieved by
conditioning the VAE on this additional information, and a straightforward way to do
this is the conditional variational autoencoder (CVAE; Sohn et al., 2015). In CVAE, the
likelihood, the prior, and the approximate posterior are all conditioned on another ob-
served variable c, resulting in pθ(x |c,z), pθ(z |c), and qφ(z |x,c). This also makes it pos-
sible to generate counterfactual samples by, for example, substituting c with c∗ when
sampling from the model.

Another variational-autoencoder model, Contrastive Mixture of Posteriors (CoMP;
Foster et al., 2022), attempts to improve on CVAE by further requiring that the latent
variable is independent of the other observed variable: z ⊥ y. This is done by adding a
misalign penalty term to the variational lower bound. The misalign penalty term forces
the aggregated approximate posterior given c to be equal to the aggregated approxim-
ate posterior not given c. Others have proposed using the maximum mean discrepancy
(Gretton et al., 2006) instead of the KL divergence (Louizos et al., 2015) or using a
pre-trained unconditional VAE (Harvey et al., 2021).
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In the pursuit of more interpretable latent representations, one avenue is hierarch-
ical variational autoencoders. The idea being that higher-order latent variables would
be able to capture more abstract aspects of the data. With two latent variables z1 and
z2, a straightforward approach would be to infer them from the bottom-up: z1 from
x and z2 from z1, and then generate the latent variables and the observation from the
top-down: z2 to z1 to x. However, it can be shown that this can lead to a collapse of
the posterior for z2 (Tomczak, 2024, §5.5.2). Instead, several approaches have been de-
veloped that both infer and generate from the top-down (Kingma et al., 2016; Sønderby
et al., 2016; Maaløe et al., 2019; Vahdat and Kautz, 2020; Child, 2021).

3.3 Adversarial autoencoder

The adversarial autoencoder (AAE; Makhzani et al., 2016) is an autoencoder which
uses its encoder and decoder to model probability distributions and regularises the
distribution of the encoder to match an arbitrary distribution for the latent variable
using generative adversarial networks. In this way, it is reminiscent of the VAE, which
uses the Kullback–Leibler divergence to match an approximate posterior distribution
(the encoder) to a prior distribution (an arbitrary distribution).

Here, I will describe elements of the adversarial autoencoders in general, and I refer
to Paper B (Appendix A.2) for a more detailed presentation of AAEs. Paper B concerns
adapting AAEs to single-cell gene expression data.

3.3.1 Generative adversarial networks

The idea behind generative adversarial networks (GANs; Goodfellow et al., 2014) is to
produce point estimates of x from z ∼ pθ(z) instead of estimating the parameters of
the likelihood function. With a function gθ(z) with parameters θ, we could achieve x =
gθ(z) by expressing the likelihood function using the Dirac delta function (Tomczak,
2024, §8.2.2):

pθ(x |z) = δ(x− gθ(z)). (3.16)

Modelling a distribution without specifying anything explicit about it is referred to as
implicit modelling. Plugging the above expression into equation (3.6) for the marginal
likelihood, we get:

pθ(x) =
∫

δ(x− gθ(z))pθ(z)dz. (3.17)

This is difficult to evaluate using Monte Carlo integration because of pθ(x |z). For maximum-
likelihood estimation, we take the logarithm of pθ(x |z) for numerical stability, but it is
not clear how to compute logδ(x− gθ(z)) (Tomczak, 2024, §8.2.2).

We could also use the change-of-variables formula to evaluate pθ(x) (Tomczak, 2024,
§4.1):

pθ(x) = pθ(g−1
θ (x))|Jg−1

θ
(x)|, (3.18)
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where Jg−1
θ

is the Jacobian matrix of g−1
θ , and this is the matrix of its first-order de-

rivatives. Computing g−1
θ and its derivatives can, however, be problematic when gθ

is a neural network. One could construct the neural network such that is invertible,
which is the idea behind normalising flows (Tomczak, 2024, Chapter 4), but in general,
maximum-likelihood estimation would be infeasible.

Instead, GANs solve another optimisation problem. We still have x = gθ(z), where
z ∼ pθ(z). In this context, gθ is known as the generator. To evaluate the output of gθ ,
we use another function dω(x) called the discriminator. This function is intended to
determine the probability whether its input comes from the empirical data distribu-
tion, pD(x). We can, for example, express this probability distribution using a Bernoulli
distribution:

pω(y |x) = B(y;1,dω(x)), y =

0, x = gθ(z), z ∼ pθ(z),

1, x ∼ pD(x).
(3.19)

Other probability distributions can also be used (Mohamed and Lakshminarayanan,
2016).

The expectation of logpω(y |x) with regards to the joint distribution p(x, y) of (x, y)
pairs is then (Murphy, 2022, §19.3.6.2)

E(x,y)∼p(x,y)[logpω(y |x)]

=
1
2

(
Epθ (z)[logpω(y = 0 |x = gθ(z))] + EpD(x)[logpω(y = 1 |x)]

)
=

1
2

(
Epθ (z)[log(1− dω(gθ(z)))] + EpD(x)[logdω(x)]

)
=Ld(ω,θ;x,z),

(3.20)

which is the objective function for the discriminator, and ω can be approximated using
maximum-likelihood estimation while fixing the parameters θ of the generator.

At the same time, we also want the generator to produce samples that look like
they come from pD(x). We can do this by tricking the discriminator by setting y = 1 in
pω(y |x) even though x is generated from z:

Epθ (z)[logpω(y = 1 |x = gθ(z))] = Epθ (z)[log(dω(gθ(z)))]

= Lg(ω,θ;z),
(3.21)

which is objective function for the generator. This is maximised with regards to θ, while
the discriminator parameters ω remain fixed. Usually, the objective functions for the
discriminator and for the generator are trained by alternating between them.

The generator could also be trained by minimising pω(y |x) with y = 0. This results
in the same expression as the first term of Ld(ω,θ;x,z). This leads us to framing the
training of a GAN as a min–max optimisation problem, which is how it was originally
formulated (Goodfellow et al., 2014):

min
θ

max
ω
L(θ,ω;x,z) = Epθ (z)[log(1− dω(gθ(z)))] + EpD(x)[logdω(x)], (3.22)
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where the conflict of the generator and the discriminator is clearly on display. This is
called the adversarial loss. Both this formulation and the alternating scheme above,
lead to the same solution, but the latter one was proved to be preferable in practice
(Goodfellow et al., 2014).

In this way, generative adversarial networks can be used to learn a way to generate
samples that look like the observations using another simpler distribution such as a
Gaussian noise model. But since we have avoided computing the inverse of gθ(x),GANs
cannot be used to infer z from x.

3.3.2 Encoder doubling as generator

The encoder of an adversarial autoencoder has two functions (Makhzani et al., 2016).
The first is two serve as the encoder of a probabilistic autoencoder, where it models
a probability distribution qφ(z |x), which can be seen as an approximation of the pos-
terior distribution (equation 3.9). To regularise the AAE, the aggregated approximate
posterior (equation 3.15) is coerced to match a prior distribution of z, pθ(z). This is done
using an adversarial network formed by the encoder functioning as generator as well
as a separate discriminator. The purpose of the discriminator is to distinguish between
samples from qφ(z) and pθ(z).

Paper B includes a short discussion of the difference of constraining qφ(z |x) in this
way compared to how it is constrained in the variational autoencoder.

3.3.3 Three-stage training

In addition to training the autoencoder part of the adversarial autoencoder, the gen-
erator and the discriminator also need to be optimised. This results in three objective
(loss) functions, which are optimised in turn. Since the encoder is present in all three
loss functions, it plays an important role in the AAE. First, the autoencoder loss will
force the encoder to produce samples that can be used to reconstruct specific observa-
tions. Second, the discriminator loss will help the discriminator to distinguish between
the samples from the encoder and samples from the prior distribution of x. Third, the
generator loss will push the encoder towards producing samples from the prior distri-
bution to mislead the discriminator.

The solution to equation (3.22) is a saddle point, and convergence of generative
adversarial networks can therefore be difficult and take a long time to achieve if at
all (Mescheder et al., 2018). Other problems for GANs include mode collapse (Salimans
et al., 2016), where the generator only produces one kind of observation; catastrophic
forgetting (Thanh-Tung and Tran, 2020), where the generator switch from mode to mode
during training; as well as the discriminator overfitting (Yazici et al., 2020).

3.3.4 Alternative adversarial autoencoders

Several variations of the adversarial autoencoder exist. The authors of the AAE them-
selves present multiple formulations in different settings and applications: supervised
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AAE, semi-supervised AAE, unsupervised clustering with AAE, and dimensionality
reduction with AAE. Adversarial autoencoders have also been adapted to different do-
mains (Kadurin et al., 2017; Jang et al., 2022; Lee et al., 2020) and modified (Creswell
and Bharath, 2019; Jin et al., 2023). Other alternatives to generative adversarial net-
works than can encode z have also been proposed (Donahue et al., 2017; Dumoulin
et al., 2016). GANs have also been combined with VAEs (Larsen et al., 2015; Plumerault
et al., 2021).



4 Applications

With the success of both single-cell transcriptomics technologies and deep generative
modelling in recent years, many models have been applied or specifically developed
for the data resulting from these technologies (Brendel et al., 2022). Here, I will outline
variational and adversarial approaches with a special focus on those used for mostly
representation or perturbation of single-cell transcriptomics data. I will also present
the methods I co-developed for my research project, scVAE-C (Paper A; Appendix A.1)
and scAAE (Paper B; Appendix A.2), as well as their results.

These methods typically model gene-expression data as raw (read or transcript)
counts, or as (standardised) log-transformed and size-factor normalised counts. As like-
lihood function for raw counts and size-factor normalised counts, a negative binomial
distribution or a zero-inflated version is usually used. The idea behind using the zero-
inflated distribution is to model the excess zeros introduced by dropout events (§2.2).
For log-normalised counts, a normal distribution is normally used.

4.1 Variational ways

Many of the generative approaches are based on variational autoencoders. One of the
first method using a VAE was VASC (Wang and Gu, 2018), which employed a standard
architecture with the output transformed using zero inflation to model dropout events
of log-normalised counts.

Another early method is scVI (Lopez et al., 2018). scVI models raw counts using a
zero-inflated negative binomial distribution. It also models the size factor (§2.3.2) as
a latent variable, allowing scVI to construct normalised counts from raw counts after
it has been trained. The decoder of scVI can additionally be conditioned on covariates
to enable integration as well as perturbation of count data. scVI have been proven to
be an effective and popular method, and it has been used as basis for a range of other
applications. CellAssign (Zhang et al., 2019) and scANVI (Xu et al., 2021) are able
to annotate cells using a method conditioned on marker genes or a semi-supervised
model, respectively. Solo (Bernstein et al., 2020) can detect doublets by classifying the
latent representation. scAR (Sheng et al., 2022) was developed to remove ambient RNA
by identifying cell-free droplets. contrastiveVI (Weinberger et al., 2023) uses two en-
coders for contrastive analysis and perturbation. Finally, MrVI (Boyeau et al., 2024) is

26
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a hierarchical model for learning both a source-aware and a source-free representation
for data from multiple sources, for example, patients.

Other methods experimented with modifying the variational lower bound. scvis
(Ding et al., 2018) and VAE-SNE (Graving and Couzin, 2020) both added the loss for
the t-SNE method to enable better visualisation and clustering of the data. To avoid
posterior collapse, one approach (Kimmel, 2020) applied the β-VAE, where the KL di-
vergence is scaled by hyperparameter β, to gene-expression data to improve the inter-
pretability of the latent representations. Two other methods, MMD-VAE (Zhang, 2019)
and DiffVAE (Bica et al., 2020), instead replaced the KL divergence by measuring the
maximum mean discrepancy (Gretton et al., 2006) between the approximate posterior
and the prior distributions. This was also used in one of the proposal (Louizos et al.,
2015) for improving the CVAE (Sohn et al., 2015) as mentioned in §3.2.4.

Some methods investigated using different priors and approximate posteriors to
better capture the data and achieve more interpretable latent representations. scVAE
(Grønbech et al., 2020), MoE-Sim-VAE (Kopf et al., 2021), and DREAM (Jiang et al.,
2023) all use normal-mixture distributions for both the prior and the approximate pos-
terior to better model multiple modes in gene-expression data. These modes can, for in-
stance, correspond to different cell types. DREAM also used a zero-inflated transforma-
tion like VASC, while scVAE enables using different count distributions, including zero-
inflated distributions as well as a constrained Poisson distribution (Salakhutdinov and
Hinton, 2009), as likelihood function. MoE-Sim-VAE takes another approach with a de-
coder for each component of the normal-mixture distributions. It then uses a mixture-
of-experts model (Shazeer et al., 2017) to compute an average of the decoders (experts).
This way different modes of the data can better be reconstructed. Additionally, it also
adds a loss to the variational lower bound that forces better clustering of the latent
representation.

Another method, scPhere (Ding and Regev, 2021), maps cells on a hypersphere us-
ing a von Mises-–Fisher distribution as approximate posterior and with a uniform prior
over the hypersphere. The von Mises-–Fisher distribution can be related to the normal
distribution (Tomczak, 2024, §5.4.2.3). scPhere uses these parameterisation to prevent
the cells from concentrating together and allow for more meaningful latent represent-
ation and better clustering.

To improve the interpretability of their latent representations, alternative approaches
use prior knowledge of some kind. SISUA (Trong et al., 2020) is a semi-supervised VAE
which in addition to modelling single-cell gene-expression counts is also trained to
reconstruct other covariate information to further constrain the latent representation.
SSCVA (Gold et al., 2019), VEGA (Seninge et al., 2021), and pmVAE (Gut et al., 2021)
all use gene sets for their model structure. SSCVA mask out connections in the neural
networks of both the encoder and decoder based on gene sets, while VEGA only does
so for the decoder, which is also linear. pmVAE instead uses separate VAEs for each
gene set and optimises them together. siVAE (Choi et al., 2023) is a related model that
forgoes gene sets by using two VAEs: one to model a gene-expression matrix across cells
(as other methods) and another to model it across genes. It then combines the outputs
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of the VAEs to reconstruct the original gene-expression matrix.
VAE-based methods have also been developed specifically for integrating cells from

different batches or data sets, perturbing gene expression of cells, or both. SCALEX
(Xiong et al., 2022) uses a decoder with domain-specific batch normalisation (Chang
et al., 2019) to integrate data. scETM (Zhao et al., 2021) uses an embedded topic model
(Dieng et al., 2020) as generative model with a batch-correction parameter to learn
topic and gene embeddings integrated across batches. scGEN (Lotfollahi et al., 2019) is
a standard VAE, which exploits that the learnt latent space is a data manifold (Kingma
and Welling, 2014) by computing and using differences between cells from different
sources to model perturbations of cells. CoupleVAE (Wu et al., 2024) uses two vari-
ational autoencoders whose latent spaces are coupled together also for pertubation
modelling.

Transfer VAE (trVAE, Lotfollahi et al., 2020) is a combination of a conditional vari-
ational autoencoder and the Variational Fair Autoencoder (Louizos et al., 2015), which
uses maximum mean discrepancy to align the approximate posterior for cells from dif-
ferent sources. As an example, this allows trVAE to integrate perturbed and control
cells as well as predict the perturbed response for the control cells. scDisInFact (Zhang
et al., 2024) is another method for both integration and perturbation. It has a shared
encoder as well as separate encoders for each covariate, which one wishes to integrate
or perturb. The latent representations are concatenated and put through a shared de-
coder. CoMP (Foster et al., 2022), which was outlined in §3.2.4, has also been used for
integration and perturbation modelling of scRNA-seq data with great success.

4.1.1 scVAE-C

scVAE-C (Paper A; Appendix A.1) is a group of four different VAE models based on
scVAE (Grønbech et al., 2020), and they implement a conditional framework in dif-
ferent ways to model single-cell gene-expression profiles. The base model is simply a
combination of scVAE and CVAE (Sohn et al., 2015) with an unconditioned prior, be-
cause we want the latent variable to be independent of the conditions. Instead of a
normal distribution, a second model uses a normal-mixture prior as well as a categor-
ical and a normal distribution for the approximate posterior similar to the GMVAE
model of scVAE. A third adds a hierarchical latent structure, and the last one combines
both normal-mixture and hierarchical modelling. Like scVAE, the models support dif-
ferent count distributions as well as a normal distribution as likelihood function, so it
can model most kinds of gene expression counts. In addition to using standard and
zero-inflated versions of the negative binomial distribution, scVAE-C also supports
constrained (Salakhutdinov and Hinton, 2009) and free-dispersion variations (Lopez
et al., 2018).

We tested the four models in two ways. One way was to determine if the models
could integrate gene expression profiles of cells from different sources in their latent
space(s) by removing covariate effects. The other way find out if the models could then
predict gene expression for counterfactually perturbed cells. For these tasks, we used
a scRNA-seq data set consisting of peripheral blood mononuclear cells (PBMCs) from
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Lupus patients (Kang et al., 2017) with about half of the cells having been stimulated
by IFN-β. As comparison methods, we used scVI, MrVI (only for integration), CVAE,
and CoMP. scVI was used, since it had proven uses for integration and perturbation,
and because of its popularity, and MrVI was a good match for the hierarchical models.
CoMP was chosen, since it had originally been used for the same tasks on the same
data set, and it outperformed other methods such as trVAE in many metrics. Lastly,
CVAE was used to compare with a standard conditional VAE for general use. Like other
models, we used CVAE with an unconditional prior.

We found that the hierarchical scVAE-C models performed best at integrating the
stimulated and control cells, and that the other scVAE-C models were not far off in
performance. However, the base model did end up mixing the cells more than other
scVAE-C models. The comparison methods all achieved worse results than the scVAE-C
methods. Regarding perturbation modelling, the nonhierarchical methods performed
close to the best comparison method, which was CoMP, using all genes for compar-
ison. However, when only the top-100 differentially expressed genes were used, the
base scVAE-C performed the best with the normal-mixture scVAE-C method, scVI, and
CoMP in tow. The latter case is more difficult to model because of the more varied ex-
pression. Overall, the normal-mixture scVAE-C method was the best model, since it
achieved good results at both tasks.

With reference to the issue of posterior collapse of VAEs (§3.2.3), it seems to have
played a role in the performances of the scVAE-C models. During development of the
normal-mixture scVAE-C models, we had a problem with the component distributions
of the prior collapsing to one and the same happened with approximate posterior. We
avoided this by factorising the approximate posterior into two distributions. A categor-
ical approximate posterior was compared to the learnable mixture coefficients of the
prior, and a normal approximate posterior was compared to component distributions
of the prior. This enabled the model to learn both cell-population-specific and global
mixture coefficients and components.

As for the hierarchical VAEs, even though these are implemented in the straight-
forward manner prone to posterior collapse, we avoided this by providing additional
information to the second-order latent variable by conditioning it on a covariate. How-
ever, reconstructions from these models were worse, which might be because of the
additional transformations between latent variables. Finally, in addition to condition-
ing the the scVAE-C models on their stimulation status, we also tried conditioning
the likelihood functions of the scVAE-C models on the library size, instead of using
a constrained negative binomial distribution. In this case, we saw that along with cells
of different stimulation statuses integrating, cells of different cell types also became
somewhat mixed. This could be because the decoder became too powerful, and the
approximate posterior distribution collapsing.
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4.2 Adversarial approaches

There exists few strictly adversarial autoencoders for single-cell transcriptomics mod-
elling. AAE-SC (Wu et al., 2020) uses an AAE structure combined with an Improved
Deep Embedded Clustering algorithm (Guo et al., 2017) to cluster the latent represent-
ation during training. IMAAE (Wang et al., 2023) integrates cells from multiple batches
by selecting an anchor batch for each set of similar cells and training a single AAE to
match the gene expression of the anchor batch for each set. DB-AAE (Ko and Sartorelli,
2024) uses an additional generator to encode the reconstruction of the prior mini-batch
(§3.1.1). The discriminator then tries to distinguish between the two encoded latent
representations. This results in better imputation and denoising of gene-expression
data.

Cell BLAST (Cao et al., 2020) is an AAE, which encodes both a continuous and a
categorical latent representation. These are then combined together with batch inform-
ation for reconstruction. Three discriminators are used to distinguish if the continuous
and categorical latent representations follow their respective prior distributions and to
determine the batch of the latent representation. Cell BLAST can then project reference
data into its learnt latent space and measure similarities between the reference and the
original data to annotate cell types.

Other methods combined VAEs and AAEs, so the the latent representation is con-
strained to follow a prior distribution by both a KL divergence and an adversarial loss.
DR-A (Lin et al., 2020) is one such model used for dimensionality reduction. It uses
an additional adversarial network with the decoder as generator and a discriminator to
distinguish between the original gene expression profiles and the reconstructed ones.
scDREAMER (Shree et al., 2023) is based on DR-A and is able to integrate batches of
cells. It features a classifier whose aim is to predict the batch of a given latent repres-
entation, and the encoder is trained to trick this classifier in addition to deceiving the
discriminator. scDREAMER can also support supervised and semi-supervised settings
using cell-type annotations.

GANs have also been used in other combination with autoencoders and VAEs. The
compositional perturbation autoencoder (Lotfollahi et al., 2021) is an autoencoder,
which uses discriminators to predict perturbations and covariate values for the latent
representations while the encoder is trained to make that impossible. For reconstruc-
tion, the decoder is provided the the real perturbation and covariate values together
with the latent representations. MichiGAN (Yu and Welch, 2021) uses a generator to
reconstruct the data from the latent representation of a VAE separately from the de-
coder and a discriminator to differentiate between the generated and the original data.
MichiGAN can then use latent-space arithmetics like scGen for perturbation model-
ling. UNAGI (Zheng et al., 2023) uses a VAE model followed by a GAN to compare the
original and reconstructed data. UNAGI alternates between this and two other phases
iteratively to be able to predict perturbed gene expression profiles. BatchAIF (Mon-
nier and Cournède, 2024) is a conditional VAE serving as generator for a GAN with a
discriminator to determine if its inputs are generated gene expression profiles or the
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original ones. The conditional VAE is then conditioned on batch information to integ-
rate cells across batches.

4.2.1 scAAE

scAAE (Paper B; Appendix A.2) is an adversarial autoencoder for embedding single-cell
gene-expression data to enable better clustering using community-detection methods
popular in single-cell transcriptomics. It addresses to problems common to generative
adversarial networks: mode collapse and discriminator overfitting (§3.3.3). To avoid
mode collapse, it employs an early-stopping scheme by clustering the data and evalu-
ating the clustering regularly during training. By using a supervised metric, this model
can also be used in semi-supervised manner. Even though community-detection clus-
tering can be a costly operation, it is feasible to so by using the GPUs also used to train
the model (RAPIDS Development Team, 2023). Discriminator overfitting is overcome
by adding noise to the discriminator during training, and multiple noise models are
supported. scAAE can also model raw and preprocessed counts by using count or con-
tinuous distributions.

scAAE was evaluated on multiple simulated data sets with clustering information
as well as multiple PBMC data set of sizes varying from about 3000 cells to about
92000 cells – all with cell-type annotations available. We then trained scAAE and eval-
uated its performance by how well clusterings of the latent representation matched the
previously annotated grouping (clustering or cell-type annotation). scAAE was trained
using both counts that were log-normalised and standardised as well as raw counts,
and for the latter case, we tested different count distributions. We also investigated
various noise models for the discriminator, and we used both unsupervised and super-
vised clustering metrics as well as the AAE losses for early stopping. For comparison,
we used a baseline method, which uses the preprocessed counts for clustering, for both
simulated and real data sets. We also modelled the real data sets using scVI to compare
with a variational approach.

We demonstrated that scAAE had almost no problems finding good latent repres-
entations for simulated data sets, while it was competitive or better than scVI and the
baseline method for the PBMC data sets. We also showed that adding discriminator
noise could help with overfitting, and that early stopping using clustering metrics was
necessary to find latent representation that could be clustered well. As for data pre-
processing, we observed that using the standardised counts work best for the small
data sets, while the large data sets were best modelled by the large data sets. When the
data sets were modelled using raw counts, we found that zero-inflated distributions
achieved the lowest reconstruction loss, but this did not result in latent representation
with the best clusterings. Besides that, no clear pattern could be determined.



5 Conclusion

Single-cell transcriptomics involves large amounts of high-dimensional data with com-
plex connections. Many kinds of techniques and analyses have been developed to makes
sense of these data and to draw inferences about them for use in, for instance, medical
applications. Deep generative modelling cover models that can learn probability distri-
butions of the data themselves and that use many nonlinear transformations to be able
to do fit complex data. Such models can scale to high dimensionality and huge data sets,
and they have been used on wide variety of data modalities as well as applied to a vast
assortment of problem areas. Therefore, it seemed obvious to apply deep generative
modelling to single-cell transcriptomics as many have also done Chapter 4.

My research project, which has been detailed in this thesis, concerned itself spe-
cifically with how to use deep generative models to represent and perturb single-cell
gene expression profiles either from the same source or from multiple sources. The goal
of the representations was to both be easily to interpret, but also useful in downstream
analysis. As for perturbation modelling, the focus was to predict counterfactual gene
expression profiles given a certain perturbation. In this thesis, I have attempted to ex-
plain both single-cell transcriptomics and deep generative modelling as they pertain
to my research project. I have also presented my research, which consisted of two pa-
pers (Appendix A) describing the methods scVAE-C (Paper A) and scAAE (Paper B),
and outlined applications of multiple other related approaches. In the following, I will
draw some final conclusions for my research project as well as give a few outlooks on
where the research is headed.

5.1 Useful models for the right data

When modelling any kind of data, you first have to be sure that you are modelling the
appropriate kind of data. Most data contain some level of noise or unwanted features,
so to make them easier to model, they are preprocessed in various ways. But how much
preprocessing to perform is needed? When preprocessing gene expression counts for
single-cell transcriptomics, you have to be careful not throwing away too much im-
portant biological variation or the wrong kind of biological variation (see §2.4.1, for
instance). For scAAE and scVAE-C, this was also an important factor in modelling gene
expressions. There was a difference in preference of preprocessing the counts for scAAE
between small and large data sets. Raw counts were preferred for large data sets, and
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this might be because they needed more biological variation to find a representation
that clustered the best. scVAE-C was only used to model raw counts, but two of the
methods used for comparison modelled log-normalised counts. Both of these methods
were bested by all scVAE-C models when removing covariate effect from gene expres-
sion profiles in their latent representations, while results were more mixed for per-
turbation modelling. This only serves to illustrate that one should be cautious when
selecting the level of preprocessing and make sure that one’s model is able to handle it
well.

This leads us to choosing an appropriate model, and for deep generative models
that means choosing an appropriate probability distribution for the data. For single-cell
gene expression data, the negative binomial distribution or a zero-inflated variation is
usually used for raw counts, while log-normalised counts are typically modelled using
a normal distribution. When modelling raw counts using scAAE, we found no prefer-
able counts distribution, except for zero-inflated distributions for the autoencoder loss.
For scVAE-C, the models using negative binomial distributions outperformed the cor-
responding models using zero inflation as well scVI, which also used a zero-inflated
negative binomial distribution. Svensson (2020) also showed that single-cell data are
not zero inflated. We also found for scVAE-C that modelling gene expression pro-
files using a probability distribution designed to constrain the data to the library size
worked better than simply conditioning the neural networks of the distribution para-
meters on that same quantity. Further research should investigate probability distribu-
tions specifically designed for single-cell transcriptomics data.

Specifically for latent-variable models and related methods, the structure of the
latent variables as well as the selection of the prior and approximate posterior distri-
butions are important. We observed for scVAE-C that the normal-mixture model per-
formed the best overall, and we noted the factorisation of its approximate posterior
allowed it to conform to different parts of the prior without collapsing. This enabled
the model to have better global (prior) and cell-specific (approximate posterior) under-
standing of the multimodal data in its latent representation. For the hierarchical scVAE-
C methods, we also found that by providing additional information to the second-order
latent variable, the approximate posterior did not collapse, which is a problem for some
hierarchical VAEs (§3.2.4). However, this did result in worse reconstructions. We did
not experiment with the distributions for the latent variables of scAAE, but we did
conclude that more flexible distributions might allow for latent representations result-
ing in improved clustering. Using more adaptable priors and approximated posteriors
(§3.2.3) should be researched more for applications in single-cell transcriptomics.

Another decision to make is whether a certain model is at all appropriate for the
problem you are attempting to solve. This is relevant for scVAE-C and scAAE, since
both are optimising an objective (or multiple) different from the task at hand. scAAE
optimises three different losses, which pull it in different direction, while the problem
was to find latent representations that clustered better than the original data. This was
addressed by separately clustering the embeddings during training, but it would better
if this could have been part of the optimisation (Wu et al., 2020). Since community-
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detection methods were used, this could prove challenging to implement because of the
need to compute gradients of the neighbourhood graphs, but is not impossible to cir-
cumvent (Moor et al., 2020). scVAE-C was being used for integration and perturbation
modelling, but these task was also not part of its optimisation. Instead, the optimisa-
tion objective was a balance between reconstruction of original data and regularisation
of the latent variable. However, integration and perturbation modelling could be built
into the model or the training scheme. Research have already shown how this could
be done (Chapter 4), but achieving good results for these tasks should be examined
further.

Another avenue for improvement is speed. Since it takes time to train VAEs and
AAEs, for them to compare favourably to other faster dimensionality-reduction meth-
ods, the training needs to be expedited or the need for training needs to be alleviated or
eradicated. Using fewer model parameters would make training faster, but we would
need to ensure that we are not sacrificing too much flexibility of the models. As for
the need for training, transfer learning uses pre-trained models to perform inference
by only training using a few new observations (few-shot learning) or not training at all
(zero-shot learning).

5.2 Towards modelling of multiomics

Other deep generative models have also been used to model single-cell gene expres-
sions. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), which are related
to variational autoencoders (Tomczak, 2024, §5.5.3), have been used for generation and
perturbation modelling (Luo et al., 2024) and modelling of gene regulatory network
(Zhu and Slonim, 2024). Language models and foundation models have also been used
for multiple tasks each (Yang et al., 2022; Shen et al., 2023; Chen et al., 2024; Hao et al.,
2024).

In single-cell transcriptomics, cells are usually disassociated from the tissue, but re-
cently technologies to quantify transcripts in situ have appeared. This is called spatial
transcriptomics. Variational and adversarial approaches have been developed to take
advantage of this kind of data (Xu et al., 2023; Fang et al., 2023). A score-based gener-
ative model, SpatialScope (Wan et al., 2023), have also been proposed for integrating
scRNA-seq data and spatial transcriptomics data.

However, transcriptomics only tell part of the story. One reason is that messenger
RNA, which is typically what is sequenced in scRNA-seq, is only a proxy of the final
gene product for protein-coding genes. This is because of post-transcriptional modi-
fication of mRNA before it is translated into proteins (Nachtergaele and He, 2017)
and post-translation modifications of proteins after that (Carlberg and Molnar, 2016,
Chapter 1). Thus, gaining information about protein expression levels and combining
them with transcription levels, would provide a better representation of gene expres-
sion. CITE-seq (Stoeckius et al., 2017) and REAP-seq (Peterson et al., 2017) are two
technologies for this purpose, and they can sequence and quantify surface proteins to-
gether with scRNA-seq. To get an even fuller representation, scATAC-seq (Buenrostro
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et al., 2015; Cusanovich et al., 2015) provide quantification about chromatin accessib-
ility, which plays a part in regulating gene expression. Other modalities of single-cell
data or other omics data are also available, leading to the study of multiomics, where
they are studied together, and this is becoming a popular area of research (Hasin et al.,
2017; Subramanian et al., 2020).

To model multiple modalities, VAEs using product-of-experts approximate posteri-
ors (Wu and Goodman, 2018) or mixture-of-experts approximate posteriors (Shi et al.,
2019) have, for example, been proposed. Such models have been used to model single-
cell multiomics data (Minoura et al., 2021; Zuo and Chen, 2021; Drost et al., 2024) in
addition to other VAE approaches (Allesøe et al., 2023; Kalafut et al., 2023). Generative
adversarial networks have also been used (Xu et al., 2022), especially in combination
with standard autoencoders (Khan et al., 2023; Singh et al., 2023) or variational au-
toencoders (Yang et al., 2024; Cao et al., 2024). scGPT (Cui et al., 2024), which is a
foundation model for single-cell data, has also recently been made available, and it can
be adapted to different tasks. Other methods have also been proposed (Brombacher
et al., 2022; Ballard et al., 2024).

Multimodal deep generative modelling of multiomics have clearly seen a lot of ad-
vancement, and training foundation models seems to be the direction we are heading
in.
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Abstract
Single-cell RNA-sequencing data sets often include covariates for clinical in-
formation, technical details, and quality metrics. These are usually used to
preprocess the data by removing their effects before analysis. We present
four methods that use covariates when modelling single-cell RNA-sequencing
data by adding a conditional framework to a variational autoencoder using
mixture models, hierarchical structure, both, or neither. By conditioning on
a specific covariate, we show that these methods, especially the hierarchical
ones, can regress out its effects from their compressed representations while
still capturing biological variation. We also demonstrate that the methods,
especially the nonhierarchical ones, can predict counterfactual gene expres-
sion profiles by changing the covariate value when generating data from their
compressed representations. Additionally, we show that all methods outper-
form similar approaches at removing covariate effects and that the nonhier-
archical methods generate counterfactual predictions at the same level or
better as similar approaches. Overall, we find that our nonhierarchical mix-
ture method achieves competitive performance in both kinds of analyses.
Our methods are implemented in Python using the TensorFlow machine-
learning library, and they are freely available as an update to the scVAE tool
at https://github.com/scvae/scvae.

1 Introduction
Single-cell RNA-sequencing (scRNA-seq) enable analysis of cells at a higher resolution than previous
approaches, and it has been increasing in use in recent years with around 2000 data sets published to
date (Svensson et al., 2020, this database1 is still being updated). scRNA-seq data sets consist of the
1Available at https://nxn.se/single-cell-studies/gui.
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gene expression counts of typically thousands of cells or more across ten or more cell types (Svensson
et al., 2020). The number of genes is usually around 20 000 in data sets of human or mouse cells, but
not all genes are expressed in every cell (Andrews et al., 2020). This leads scRNA-seq data sets to
be large, high-dimensional, and sparse in addition to being complex because of the varied expression
across cell types. Several methods and tools are available to process and analyse these data sets. Most
notably among these are Seurat (Hao et al., 2023) and Scanpy (Wolf et al., 2018), which both use
various machine-learning methods. Deep generative methods, which use many-layered neural networks
to model data in a probabilistic manner, have also been shown to be effective at modelling scRNA-seq
data sets. Examples of such methods include scvis (Ding et al., 2018), VASC (Wang and Gu, 2018),
scVI (Lopez et al., 2018), and scVAE (Grønbech et al., 2020), which all use variational autoencoders
(VAE, Kingma and Welling, 2014; Rezende et al., 2014). VAEs model data by compressing them into
lower-dimensional (latent) representations that can more easily be analysed or further processed as
well as used to reconstruct the original data. For scRNA-seq data, these analyses could be for biological
insights such as cell-type identification or gene expression profiling under alternative conditions.

In addition to gene expression, scRNA-seq data sets usually include information about cell types,
technical details such experiment batches for each cell, and clinical information such as age, sex,
and ethnicity for each donor (Gagnon et al., 2022). Quality metrics such as the sum of the gene
expression counts for each cell (the library size) and fraction of mitochondrial RNA of each cell
can also be computed from the data (Wolf et al., 2018). Many methods such as Seurat use this
information as covariates when preprocessing data to remove batch effects or simply regress them
out. scVI can use batch information or other covariates when generating the gene expression counts
of cell to remove covariate effects in a similar manner. Including covariates in a scVI model can also be
used to predict counterfactual expression profiles by replacing the covariate information. This could
for instance predict how the gene expressions of a healthy cell would look if it was in a diseased state
instead. Methods for counterfactual prediction include scGen (Lotfollahi et al., 2019), transfer VAE
(trVAE, Lotfollahi et al., 2020), Compositional Perturbation Autoencoder (CPA, Lotfollahi et al.,
2021), and Contrastive Mixture of Posteriors (CoMP, Foster et al., 2022).

Here, we present scVAE-C, which includes four modifications to the scVAE method, that can
model gene expression counts for single cells using covariates in a conditional variational-autoencoder
framework (CVAE, Sohn et al., 2015). The four methods consist of a base method, which is a com-
bination of scVAE and CVAE, and a hierarchical method as well as normal-mixture versions of the
two. We include hierarchical methods to be able to condition on covariates separately, and we use the
normal-mixture methods, since they have been proven to better model inherent clusters of scRNA-seq
gene-expression count data (Grønbech et al., 2020). For each method, the gene expression counts of
a cell are conditioned on covariates both when compressing (or encoding) the cell into a latent rep-
resentation (the inference process) and when reconstructing the gene expression counts of the cell by
decoding this representation (the generative process). The methods support conditioning on multiple
covariates at the same time, and they support both numerical and categorical covariates.

We demonstrate that the scVAE-C methods, particularly the hierarchical ones, can remove co-
variate effects from the latent representations, and how this affects the interpretability of these latent
representations. We also show that the methods, particularly the nonhierarchical ones, are able to
counterfactually predict gene expression profiles by changing the covariate values for cells when de-
coding the latent representations. We compare our methods with CVAE Sohn et al., 2015, CoMP
Foster et al., 2022, scVI (Lopez et al., 2018), and MrVI (Boyeau et al., 2022). CVAE is a general
implementation not specifically dedicated to biological data, while CoMP extends CVAE by adding a
misalignment penalty term to the variational lower bound. The intention of this penalty is to enable
CoMP to remove batch effects by ensuring independence of the latent representation and the covari-
ates. Due to their more general approaches, CVAE and CoMP are trained with normalised scRNA-seq
gene-expression counts, whereas scVAE-C and the other comparison methods are trained with raw
gene-expression counts, which have been shown to improve performance in some cases (Eraslan et al.,
2018; Lopez et al., 2018; Grønbech et al., 2020). MrVI is a hierarchical method based on scVI. It uses
two latent representations in a hierarchy to remove different covariates from each latent representa-
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tion. Like scVI, MrVI also only conditions on covariates when generating gene expression counts of
cells, whereas scVAE-C and the other comparison methods also conditions on covariates during infer-
ence. We find that all scVAE-C methods outperform the comparison methods at latent-representation
covariate removal, and that the nonhierarchical scVAE-C methods achieve competitive results with
best comparison method for counterfactual prediction. The base mixture scVAE-C method attains
the best overall performance.

Our contributions consists of four conditional VAE methods for modelling scRNA-seq gene ex-
pression profiles and covariates, analyses of their performances in removing covariate effects from
their latent representations and in counterfactual prediction of expression profiles, as well as software
implementations of the methods and the pipeline used for preprocessing and performing experiments
and analyses. Compared to scVAE, scVAE-C adds a flexible conditional framework as well as an
optionally hierarchical latent structure to both the standard and the normal-mixture VAEs of the
scVAE method. None of the methods to which we compare scVAE-C supports the same level of
functionality and customisability for conditioning on covariates.

2 Methods and materials
There are several ways to add a conditional framework to the scVAE method. We present the basis of
our approach in this section along with a few additions using normal-mixture models and hierarchy. We
also describe our analyses, the data we use, our experiment setup, and our software implementation.

2.1 Conditional generative process
The first approach is based on combining the standard scVAE method and the CVAE method (Sohn
et al., 2015). We let X be an M ×N -matrix representing a data set of the gene expression counts of
M cells and N genes. We also let xm be a vector denoting the mth individual cell of the data set with
each component xmn corresponding to the gene expression count for the nth gene. The covariates for
this cell are represented by a vector cm (§2.6). The gene expression counts and covariates for each cell
form our observations for that cell. For ease of notation in the following, we use x and c to symbolise
the gene expression counts and covariates, respectively, of any individual cell in the data set.

We assume x to come from a probability distribution conditioned on c: x ∼ p(x | c, θ) = pθ(x | c),
which is parameterised by θ. By doing this, we let some of the variation in x be explained directly
by c and let θ model the rest. Since N ≫ 1, we next introduce a stochastic variable z as a vector
with fewer dimensions than x to represent a compressed representation of x. We do this by also
conditioning the probability distribution of x on z. Modelling x in this way is called a latent-variable
model, where z is the latent variable. We then end up with the following joint distribution for x and
z:

pθ(x, z | c) = pθ(x | z, c) pθ(z), (1)

where pθ(x | z, c) is the likelihood function for x and z and pθ(z) is the prior distribution of z. We do
not condition z on c, since we want the latent representation to not be dependent on the covariates.
We do, however, list conditional priors for all scVAE-C methods in Supplementary Note S7.

By marginalising out z from the joint distribution, we get an expression for pθ(x | c):

pθ(x | c) =
∫

pθ(x | z, c) pθ(z) dz. (2)

Assuming that cells are independent and identically distributed, we can determine θ by multiplying
together the marginalised likelihood functions for all cells and use maximum-likelihood estimation:

θML = arg max
θ

M∏

m=1
pθ(xm | c) = arg max

θ

M∑

m=1
log pθ(xm | c), (3)

where we take the logarithm of the marginalised likelihood functions for numeric stability.
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Since the aim is to model raw count data, each gene expression count xn is assumed to to follow its
own negative binomial distribution (Oshlack et al., 2010): xn ∼ NB(ρn, ωn) (Supplementary Note S1).
Assuming that the counts are also independent and identically distributed, the likelihood function is
the product of these negative binomial distributions. By further assuming the prior distribution of z
to be a unit multivariate normal distribution, this gives us the generative process for x:

pθ(x | z, c) =
N∏

n=1
NB(xn; ρθ

n(z, c), ωθ
n(z, c)), (4a)

pθ(z) = N (z; 0, I). (4b)

Here, the distribution parameters rθ
n(z, c) and pθ

n(z, c) are given by z and c and modelled using
neural networks as in Grønbech et al. (2020). We also investigate zero-inflated, constrained, and free-
dispersion versions of the negative binomial distribution (Supplementary Note S1). The model graph
for the generative process is shown in Figure 1a with solid arrows.

2.2 Conditional inference process
The marginalised likelihood in equation (2) becomes intractable as the number of dimensions of z
increases. Usually this is solved by using the expectation-maximisation algorithm, but this requires
the posterior distribution, which is intractable for more complicated functions like neural networks.
Instead a variational Bayes optimisation method is used, by introducing an approximate posterior
distribution qϕ(z | x, c) parameterised by ϕ and decomposing the marginal log-likelihood (taking the
logarithm of equation 2) into two terms:

log pθ(x | c) = KL[qϕ(z | x, c) ∥ pϕ(z | x, c)] + Eqϕ(z | x,c)

[
log pθ(x, z | c)

qϕ(z | x, c)

]
. (5)

Here, the first term is Kullback–Leibler (KL) divergence between the approximate and the true
posterior distribution. The KL divergence of two distributions is only zero, when the distributions
are equal, and positive otherwise, so the second term becomes a lower bound of log pθ(x | c). Since we
cannot evaluate the first term because of the intractable posterior, we focus on optimising the second
one. This is called the variational lower bound, L(θ, ϕ; x, c), and it can be further decomposed into
two terms:

L(θ, ϕ; x, c) = Eqϕ(z | x,c)

[
log pθ(x, z | c)

qϕ(z | x, c)

]
= Eqϕ(z | x,c)[log pθ(x | z, c)] − KL[qϕ(z | x, c) ∥ pθ(z)], (6)

where the first term is the expected negative reconstruction error. Monte Carlo integration is used to
integrate over z by drawing R samples from qϕ(z | x, c), computing L(θ, ϕ; x, c) for each sample and

(a) scVAE-CB. (b) scVAE-CH.

Figure 1. Model graphs of the generative and inference processes for two of the scVAE-C methods. Circles
represent observed (grey) and latent (white) variables, and arrows indicate the directions of the generative (solid)
and inference (dashed) processes.

4



averaging over the samples. The approximate posterior distribution is assumed to be a multivariate
normal distribution to better resemble the prior distribution of z, yielding the inference process for
z:

qϕ(z | x, c) = N (z; µϕ(x, c), σ2
ϕ(x, c)I). (7)

Here, the distribution parameters are given by x and c and also modelled using neural networks.
By letting the inference process be conditioned on c, cells with similar covariates will more easily
be recognised as being similar by the process. A reparameterisation trick is used to sample z for
the Monte Carlo integration to allow backpropagation of the neural networks during optimisation
(Kingma and Welling, 2014; Rezende et al., 2014). The model graph for the inference process is
shown in Figure 1a with dashed arrows. Together, the conditional generative and inference processes
form our base scVAE-C (scVAE-CB) method.

2.3 Reconstruction and counterfactual prediction
By computing the expected value of the likelihood function with respect to the approximate posterior
distribution, we can reconstruct x as x̃ using the scVAE-CB method:

x̃(x, c) = Eqϕ(z | x,c)
[
Epθ(x | z,c)[x]

]
=

∫ ∑

x′
x′ pθ(x′ | z, c) qϕ(z | x, c) dz. (8)

This is effectively replacing the prior (equation 4b) in the generative process with the inference
process (equation 7). By conditioning on c, the inference process essentially removes the effect of the
covariates from the cells, whereas the remaining generative process adds it back.

We can use this approach to produce counterfactual reconstructions x∗. This counterfactual pre-
diction is done by passing factual covariate values c to the inference process, and then passing the
counterfactual covariate values c∗ to the remaining generative process:

x∗(x, c) = Eqϕ(z | x,c)
[
Epθ(x | z,c∗)[x]

]
=

∫ ∑

x′
x′ pθ(x′ | z, c∗) qϕ(z | x, c) dz. (9)

This is illustrated in Figure 2a.

2.4 Conditional hierarchical scVAE
Another approach to conditional modelling with scVAE uses two stochastic latent variables, z1 and
z2, arranged in hierarchical latent layers: x is encoded by z1, and z1 is encoded by z2. This method is
our hierarchical scVAE-C (scVAE-CH) method, and it is similar to the M1+M2 method in Kingma

(a) scVAE-CB. (b) scVAE-CH.

Figure 2. Model graphs of counterfactual prediction for two of the scVAE-C methods. Circles represent observed
(grey), latent (white), and counterfactual (light grey) variables. Arrows indicate the directions of the inference
process (dashed) and the counterfactual generative process (solid).
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et al. (2014). But whereas that method was trained in two separate steps, this method is trained in
one. It uses the following generative process:

pθ(x, z1, z2 | c) = pθ(x | z1) pθ(z1 | z2, c) p(z2), (10a)

pθ(x | z1) =
N∏

n=1
NB(xn; ρθ

n(z1), ωθ
n(z1)), (10b)

pθ(z1 | z2, c) = N (z1; µ1,θ(z2, c), σ2
1,θ(z2, c)I), (10c)

pθ(z2) = N (z2; 0, I). (10d)

By letting only z1 be conditioned on c, we separate the generation of x in first latent layer from the
addition of any covariate effects in the second latent layer. The inference process of this method has
a similar separation:

qϕ(z1, z2 | x, c) = qϕ(z2 | z1, c) qϕ(z1 | x), (11a)
qϕ(z2 | z1, c) = N (z2; µ2,ϕ(z1, c), σ2

2,ϕ(z1, c)I), (11b)
qϕ(z1 | x) = N (z1; µ2,ϕ(x), σ2

2,ϕ(x)I). (11c)

Here, the removal of covariate effects and the compression of x are separated in the two latent layers
by conditioning only z2 on c. All distribution parameters are modelled using neural networks as in
the scVAE-CB method. The model graphs for both the generative and inference processes are shown
in Figure 1b.

The variational lower bound for the method can computed as

L(θ, ϕ; x, c) = Eqϕ(z1,z2 | x,c)

[
log pθ(x, z1, z2 | c)

qϕ(z1, z2 | x, c)

]
. (12)

This expression can be decomposed into reconstruction error and KL divergences as shown in Supple-
mentary Note S2, which also lists derivations for reconstruction and counterfactual prediction. The
counterfactual prediction is also illustrated in Figure 2b.

2.5 Conditional mixture scVAE methods and latent-layer conditions
Both the base and hierarchical conditional scVAE methods use normal distributions for the prior
and approximate posterior distributions. To better model scRNA-seq data with several differing
cell types, we can use normal-mixture models instead for these distributions as demonstrated in
Grønbech et al. (2020), specifically, and in Kingma et al. (2014) and Dilokthanakul et al. (2016) in
general. Supplementary Notes S3 and S4 describe the base mixture scVAE-C (scVAE-CM) and the
hierarchical mixture scVAE-C (scVAE-CHM) methods, respectively.

The conditional hierarchical scVAE methods can also be further extended to support conditions
specific to each latent layer. This enables each latent layer to focus on different covariates. For instance,
one latent layer could focus on technical variation, and the other could focus on clinical information.
The model setup for these extensions to the scVAE-CH and the scVAE-CHM methods are shown in
Supplementary Notes S2.1 and S4.1, respectively.

Additionally, the model graphs of the generative and inference processes for all methods are
illustrated in Supplementary Figure S1, and the model graphs of the counterfactual prediction for all
methods are shown in Supplementary Figure S2.

2.6 Conditioning on covariates
Covariates in scRNA-seq data are usually represented as categorical (for example, experiment batches,
donors, disease states) or numeric (for example, age, treatment dosage, fraction of mitochondrial
RNA). scVAE-C supports conditioning on both of these. Numeric, both discrete and continuous,
covariates are used as-is, while categorical covariates are one-hot encoded (Harris and Harris, 2013).
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One-hot encoding is a way to represent unordered categories as binary vectors each with a length
equal to the number of categories. Each component of the vectors then corresponds to a specific
category, and it is 1 when the vector represents that category and 0 otherwise. When a variable, x or
z, is conditioned on one or multiple other variables including covariates, these are all concatenated
into one vector.

2.7 Analyses
We compare scVAE-C methods directly with each other as well as other likelihood-based methods
evaluated on the raw gene expression counts using the variational lower bound. However, this only
measures how well each method can model the data. We also want to investigate how well the scVAE-
C methods can remove covariate effects from latent representations as well as their performance in
generating counterfactual expression profiles. This also allows us to compare scVAE-C with a wider
range of methods. For details about hyperparameters used for the below analyses, see Supplementary
Note S5.1.

2.7.1 Analysing latent-representation covariate removal
The local inverse Simpson’s index (LISI, Korsunsky et al., 2019) is used to assess categorical covari-
ate removal from the latent representations and the resulting integration of cells. LISI measures how
well the neighbourhood around a single cell is mixed according to some categorical covariate such as
experiment batch information. More precisely, it is the effective number of categories in the neigh-
bourhood of the cell. Thus, the minimum is 1 and signifies no mixing, whereas the maximum equals
the number of categories for the covariate in question and means that cells of different categories have
mixed completely. We compute LISIs with respect to cell type as well as the categorical covariate
used for conditioning. Following Korsunsky et al. (2019), we call the former cell-type LISI (cLISI) and
the latter integration LISI (iLISI). To compute a single value for a population of cells (for example,
a data set), we take the median of the population. Since one of the aims of the methods is to remove
covariate effects, we want the median integration LISI to achieve the maximum value. However, cell
types should not become more mixed than they already are, so we want the median cell-type LISI
to be less than for the data set itself. As a baseline for the data set, we perform a truncated singular
value decomposition (TSVD) of the normalised count data (see §2.8), and compute the LISI values
using Euclidean distances between the decomposed representations, h, of the cells. For latent repre-
sentations, Euclidean distances are computed between the mean values of latent variable in question.
As an example, we use µϕ(x, c) (see equation 7) for the scVAE-CB method.

We also visualise the latent representations using the UMAP dimensionality-reduction method
(McInnes et al., 2020) to visually inspect the covariate removal and its effects on other relevant co-
variates. Again, we use the mean values of the latent variable in question for each latent representation
to compute Euclidean distances.

2.7.2 Analysing counterfactual expression profiles
To evaluate the counterfactual prediction of the gene expression profiles (see equation 9 for the scVAE-
CB method), we follow Lotfollahi et al. (2019) in performing regression analyses as well as visualising
factual and counterfactual expression profiles. We show the analyses at the resolution of individual,
previously published, expert-annotated cell types within a data set.

For the regression analyses, we first compute the mean gene expression levels of each gene across
cells of the same cell type for both the data set as well as for the counterfactual predictions. For the
data set, we only use cells of the same kind as the counterfactual predictions. We then compare the
counterfactual mean gene expression levels of each gene to the factual ones for each cell type. We do
this by performing a linear least-squares regression analysis using all genes and report the coefficient
of determination, R2, which is the square of the Pearson’s correlation coefficient (see Supplementary
Note S5.2 for calculation of statistics). Additionally, we compute the top-100 differentially expressed
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genes (DEGs) using the Wilcoxon rank-sum test and perform the regression analyses again with only
these genes.

We also compare the mean gene expression levels of specific marker genes for groups of counterfac-
tually generated cells to real cells visually using a dot plot. This shows both the mean gene expression
for each combination of cells and marker genes as well as the fraction of cells that expresses that gene
in that combination. Since reconstructed counts from the methods are real numbers (Supplementary
Note S1), we only consider a gene expressed in a cell if its expression count is greater than 0.5.

For these analyses, raw gene expression counts both from the data set as well as predicted by the
methods are normalised and log-transformed (see §2.8).

2.8 Data set
We apply our methods to a scRNA-seq data set of peripheral blood mononuclear cells (PBMCs)
from Lupus patients (Kang et al., 2017). This data set has been previously used in scRNA-seq
benchmarking on probabilistic deep learning models (Lotfollahi et al., 2019, 2020). The data set
contains gene expression counts for 14 053 genes and 13 576 cells divided between eight cell types. A
little over half (7217) of the cells have been IFN-β stimulated and the rest (6359) are control cells.
Concerning cell types, 32 % of the cells are CD14 monocytes, 31 % are CD4 T cells, and the rest of
the cells are divided among the remaining six cell types. Stimulated cells also represent about half of
the cells of each cell type, except for B, CD4 T, and CD8 T cells for which 57 % are stimulated cells
(Supplementary Figure S3).

We filter the genes and only keep the 2000 most varying genes (Stuart et al., 2019). For the
remaining genes and for all cells, we compute quality metrics such as the library size. Supplementary
Figure S4 shows distributions of the library sizes for stimulated and control cells of each cell type.
For each cell type, the library sizes of stimulated cells are on average higher than the control cells,
especially for monocytes and dendritic cells. The library sizes for these cells are also significantly
higher than for the other cells. For analyses and methods that cannot use the raw gene expression
counts, before filtering the genes, we normalise all cells to have the same library size (the median
library size of cells before normalisation) and log-transform the normalised counts using log(1 + x).
Normalisation is performed, since the library size varies dependent how well the RNA content of each
cell was quantified (Luecken and Theis, 2019), and we are not interested in this variation. Additionally,
for computing LISI values for the data set, we follow Korsunsky et al. (2019) in also standardising the
normalised counts to have zero mean and unit variance as well as performing L2 normalisation followed
by truncated SVD factorisation with 30 components. A UMAP embedding of this representation is
shown in Supplementary Figure S5, which demonstrate the separation of stimulated and control cells
for each cell type as well as the differences in library size. For the counterfactual-prediction analyses,
we use the marker genes for IFN-β response reported in Butler et al. (2018).

2.9 Experiment setup
For the Kang data, we aim to integrate stimulated and control cells in a latent representation to
demonstrate the covariate removal of the stimulation status. To assess the generation of counterfac-
tual expression profiles, we predict expression profiles of stimulated cells for each cell type. For our
purposes, the data set is shuffled and split into the three subsets: 60 % for a training set used for
training models, 20 % for a validation set used for evaluation during training and early stopping, and
the remaining 20 % for a test set used for evaluation after training. For counterfactual prediction,
separate models are trained for each cell type by withholding the stimulated cells of that cell type
from the training and validation sets. Stimulated cells of other types remain in the training and val-
idation sets to allow the models to learn the relationship between stimulation and gene expression.
The model for each cell type is then used to predict counterfactual expression profiles for control cells
of that cell type if they had been stimulated. Results are averaged across all cell types.

All scVAE-C models use the same neural-network architecture, and we use feed-forward neural
networks, so the order of genes and conditions does not matter. We do this for simplicity, and since
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we do not truly know how the genes depend on each other. For each analysis and method, we perform
configuration searches to test the different likelihood functions, conditioning on library size, as well
as using dropout regularisation (Hinton et al., 2012). All models are trained five times with different
random seeds resulting in five replicates for each model, and we report the median as well as the
interquartile range. For more details about model setup, training procedure, configuration searches,
and model selection, see Supplementary Note S6 as well as Supplementary Tables S1–S2.

We compare scVAE-C with four other methods: CVAE, CoMP, scVI, and MrVI (the last method
is only used for latent-representation covariate removal). We perform a small configuration search for
CVAE and CoMP and use the default configuration for scVI and MrVI, and they are also trained five
times each. These are all VAE methods, and since scVI and MrVI use raw count data like scVAE-C,
we can compare their variational lower bounds directly. CVAE and CoMP use normalised count data,
so we can compare their variational lower bound to each other. We can compare all methods for the
remaining analyses, however, because of some implementation details, we can only compare results
for the test set. For consistency, we use the same notation for these methods as for the scVAE-C
methods. See Supplementary Note S6.5 for more details about the comparison methods.

2.10 Software implementations
The scVAE-C methods have been implemented in Python as an update to the scVAE Python package,
which is freely available online2. This implementation mainly uses the machine-learning software
libraries TensorFlow (Abadi et al., 2015) as well as TensorFlow Probability (Dillon et al., 2017). All
used software libraries are listed in Supplementary Table S3. In addition to the methods presented
above, the software implementation also supports conditioning priors on covariates (Supplementary
Note S7).

The preprocessing, experiment setup, and analyses have also been implemented in Python, but
using the software libraries Scanpy (Wolf et al., 2018), seaborn (Waskom, 2021), and others (Supple-
mentary Table S4). The source code for this implementation is also freely available available online3.

3 Results
We have used the four scVAE-C methods to model the scRNA-seq data set described in §2.8. We have
assessed how well the methods can remove the effects of a particular covariate from their latent rep-
resentations and integrate the cells. We also examined how good the methods are at counterfactually
predicting expression profiles for the removed covariate.

3.1 Latent-representation covariate removal
For each scVAE-C method, we first performed a configuration search, and then compared the optimal
models to each other as well as the comparison methods both quantitively and qualitatively.

3.1.1 Likelihood functions, conditioned covariates, and dropout regularisation
The configuration search for each scVAE-C method consisted of testing different likelihood functions,
two sets of conditioned covariates, as well as using dropout regularisation or not (Supplementary Fig-
ures S6–S9). In general, constrained negative binomial distributions performed the best – sometimes
helped by having free dispersion, and zero-inflated distributions performed the worst. Conditioning on
both the stimulation status and library size performed as well as or better than using the constrained
distributions with stimulation status and condition, except for the median cell-type LISI. These mod-
els did indeed integrate stimulated and control cells, but they also mixed cells of different cell types
significantly more than models only conditioned on stimulation status. Therefore, we excluded these
models from further analyses in this section. Dropout regularisation improved the variational lower
2https://github.com/scvae/scvae
3https://github.com/scvae/scvae-pipeline
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bound for all models, however, results were more mixed for the LISI medians: Overall, LISI medians
improved, but the median integration LISI was generally worse for the scVAE-CB and scVAE-CM
methods, and the median cell-type LISI was worse for the scVAE-CHM method.

3.1.2 scVAE-C methods integrated stimulated and control cells better than comparison
The results of the optimal models for each scVAE-C method are summarised in Table 1 along with
the comparison methods. Supplementary Figure S10 also visualises these results, and Supplementary
Table S5 summarises the configurations for the optimal scVAE-C models. The variational lower
bounds of the scVAE-C methods were all close to each other, but on average the lower bounds became
better as the complexity of the method increased. They were also all better than the variational lower
bound for scVI, but worse than the one for MrVI, which is significantly higher.

According to the median integration LISI (see also Supplementary Figure S10b), the z2 latent
representations of the hierarchical scVAE-C methods achieved the best integration of stimulated and
control cells with close to the maximum value of 2. The other two scVAE-C methods had the next
best integration. Additionally, the z1 latent representations of the hierarchical scVAE-C methods
and MrVI all achieved a median iLISI equal to or close to 1, indicating that the learned latent
representations separated cells with different stimulation status. These results were also significantly
lower than the baseline truncated SVD method. The above is also evident from Figure 3, which shows
the distributions of cell-level integration LISI values for each method. We see that the hierarchical
scVAE-C methods were able to integrate all cells in their z2 representation to a higher degree than
any of the other methods. Simultaneously, these methods were also able to separate most of the
stimulated and control cells in their z1 representation better than any method (including the baseline
method) other than MrVI in its z1 representation. The scVI, MrVI (for its z2 representation), CVAE,
and CoMP methods had more difficulty integrating stimulated and control cells with scVI and CVAE
leaving some cells completely separate. This is mainly because they were worse at mixing different
stimulation states for CD14 monocytes and CD4 T cells, which are the most populous in the data

Table 1. Variational lower bounds and LISI medians for latent-representation covariate removal. The median and
the interquartile range across replicate models of each method are reported. Arrows indicate the optimal direction,
and the optimal results (based on the interquartile range) have been highlighted. For each metric, optimal models
for the scVAE-C methods were selected using the metric itself, except for the median cell-type LISI for which the
median integration LISI was used (Supplementary Note S6.4).

Method L ↑ Representation ̂iLISI ↑ ̂cLISI ↓
raw counts

scVAE-CB −407.6 (−407.62–
−407.49) z 1.869 (1.8661–

1.8697) 1.071 (1.0702–
1.0712)

scVAE-CM −406.8 (−407.14–
−406.83) z 1.876 (1.8748–

1.8811) 1.010 (1.0077–
1.0118)

scVAE-CH −406.4 (−406.49–
−406.38) z1 1.000 (1.0000–

1.0001) 1.007 (1.0054–
1.0081)

z2 1.925 (1.9117–
1.9282) 1.013 (1.0122–

1.0196)
scVAE-CHM −406.3 (−406.42–

−406.33) z1 1.003 (1.0026–
1.0040) 1.009 (1.0088–

1.0092)
z2 1.930 (1.9288–

1.9328) 1.009 (1.0047–
1.0116)

scVI −415.5 (−415.86–
−415.46) z 1.709 (1.6934–

1.7131) 1.038 (1.0364–
1.0388)

MrVI −398.3 (−398.49–
−398.01) z1 1.000 (1.0000–

1.0000) 1.010 (1.0087–
1.0103)

z2 1.784 (1.7708–
1.7908) 1.010 (1.0087–

1.0103)
normalised counts

CVAE −861.0 (−862.15–
−860.91) z 1.730 (1.7285–

1.7409) 1.061 (1.0611–
1.0616)

CoMP −778.4 (−779.67–
−777.40) z 1.775 (1.7708–

1.7748) 1.077 (1.0687–
1.0791)

TSVD h 1.031 1.022
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set, than for most other cells (Supplementary Figure S11).
We also looked at the cell-type LISI for the optimal scVAE-C models (selected using the median

iLISI) as well as for the comparison methods. All representations of the three hierarchical methods as
well as the scVAE-CM method attained comparable cLISI medians lower than the baseline method,
meaning that cell types were less mixed than for this baseline. The other methods, which only have
one latent layer, mixed cells of different cell types in their latent representation somewhat more and
worse than the baseline method – with the scVAE-CB and CoMP methods being the worst ones. This
can also be seen by looking at the cell-level cLISI distributions for each method in Supplementary
Figure S12 with distributions for single-latent-layer methods being less concentrated close to 1.

3.1.3 UMAP embeddings of latent representation hints at capture of biological variation
In addition to quantifying the results, we also inspected the latent representations visually. Figure 4
shows UMAP embeddings of the latent representations that were conditioned on stimulation status
for the optimal scVAE-C method, scVAE-CHM, as well as scVI, MrVI, and CoMP coloured by
stimulation status, cell type, and library size. UMAP embeddings of all latent representations for
all scVAE-C methods and comparison methods are shown in Supplementary Figures S13–S15. All
latent representations have clustered well according to cell type (less so for the scVAE-CB method,
see Supplementary Figure S14), which suggests that biological variation is captured in the latent
representations. This was also expressed by the cell-type LISI. We do observe that the clusters,
especially the cluster of T and NK cells, in the z2 latent representations of the hierarchical scVAE-C
methods are more loosely connected than in the latent representations for the other methods. We saw
this same pattern in the z2 latent representations of all hierarchical scVAE-C models using dropout
regularisation. These same models also had higher integration LISI medians than the corresponding
models without dropout regularisation, but mostly worse cell-type LISI medians. This might imply
that hierarchical scVAE-C methods reveal more substructure of each cluster than the other methods,
and that this substructure is not necessarily congruent with the annotated cell types. But it could
also simply be an artefact of the UMAP embedding arising from noise from two layers of dropout
regularisation.

As for the stimulation status, the latent representations conditioned on that covariate for the
scVAE-C methods all look to have been well integrated (Supplementary Figure S13), which was also
evident from the integration LISI. We can also visually confirm that the comparison methods had
difficulty integrating especially monocytes of different stimulation status, leading to a worse median
iLISI than for the scVAE-C methods. Additionally, the z1 latent representations of the hierarchical

Figure 3. Distributions of cell-level integration LISIs for latent-representation covariate removal. For the latent
representation(s) of each method, the kernel density estimate, median, and interquartile range are shown for the
median-performing replicate model. Optimal models were used for the scVAE-C methods. The kernel density
estimates were normalised to display with the same area. The median and the interquartile range for the
decomposed representation of the baseline TSVD method are also shown.
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Figure 4. UMAP embeddings of latent representations for latent-representation covariate removal. Embeddings
are shown for the median-performing replicate model of each method, and they are coloured by stimulation state,
cell type, and library size. The optimal model for the scVAE-CHM method was selected using the median iLISI. For
all latent representations for all methods, see Supplementary Figures S13–S15.

methods show the clear separation of stimulated and control cells as indicated by their iLISI values.
Looking at the library-size colour-coding, we can see that cells with higher library sizes have clustered
together. This is unsurprising, since these cells are monocytes and dendritic cells, which were already
shown to cluster closely together. Comparing with the stimulation-status colour coding, we can also
see the difference in library size between stimulated and control cells for these cells evident in the
data set (Supplementary Figure S4). Cells with lower library sizes form two superclusters, which is
likely one of the reason why conditioning on library size mixes cell types to a high degree.

3.1.4 Mostly small correlations between variational lower bound and local inverse Simpson’s
indices

Finally, we examined correlations between the variational lower bound and either of the LISI medi-
ans for the scVAE-C methods (Supplementary Figures S16). There seems to be a slightly positive
correlation between the variational lower bound and the median integration LISI for the hierarchical
scVAE-C methods, meaning that optimising the variational lower bound could lead to better inte-
gration for these methods. For the non-hierarchical scVAE-C methods, there does not seem to be
any correlation. Regarding the median cell-type LISI, this seems to be negatively correlated with the
variational lower bound for the scVAE-CB method and less so for its hierarchical equivalent, meaning
that optimising the variational lower bound results in less mixing of cell types, in general. There does
not seem to be any correlation for the scVAE-CM method. Do mind that we excluded the models
conditioned on both stimulation status and library size, since they achieved significantly worse cLISI
medians.
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3.2 Counterfactual expression profiles
We again began by performing a configuration search for each scVAE-C method, followed by quantitive
and qualitative comparisons of the optimal models and the comparison methods.

3.2.1 Likelihood functions, conditioned covariates, and dropout regularisation
The same configuration search as in §3.1 was performed for this analysis (Supplementary Figures S17–
S19). For the mean variational lower bound (Supplementary Figures S17), we saw the same patterns
for likelihood functions, condition sets, and dropout regularisation as for the variational lower bound
in the analysis of the latent-representation covariate removal. This shows us that excluding some
stimulated cells does not change the overall performance of the methods. Results are more mixed
for the mean coefficients of determination using either all genes, R2

all, or the top-100 DEGs, R2
all

(Supplementary Figures S18–S19). Models with different likelihood functions performed comparably
for all methods, but to a lesser extent for the hierarchical methods. Also conditioning on library size
resulted in better mean coefficients of determination for the scVAE-CH and scVAE-CHM methods,
but worse values for their nonhierarchical versions. Dropout regularisation improved R2 for the scVAE-
CM method, but made the values for the other methods worse, especially for the hierarchical ones.

3.2.2 Nonhierarchical scVAE-C methods captured covariate effects competitively with best
comparator

Table 2 shows the results for the optimal model for each scVAE-C method as well as for the comparison
methods. The same results are also visualised in Supplementary Figure S20, and the configurations
for the optimal scVAE-C models are summarised in Supplementary Table S6. We first note that
the optimal mean variational lower bound for each scVAE-C method is similar to the corresponding
method in §3.1, which is further evidence that leaving out some stimulated cells does not have a large
effect on model performance. As for R2

all, CoMP performs the best on average, but CVAE, scVAE-CB,
and scVAE-CM are all close to it in performance. scVAE-CB achieves the best R2

top with scVAE-CM,
scVI, and CoMP being close to its performance. For both coefficients of determination, the hierarchical
scVAE-C methods perform the worst and also vary the most between replicates. We also found that
these methods performed worse at reconstructing the true mean expression of stimulated and control
cells using the models trained on all of the test set (Supplementary Figures S21–S22).

We also examined the variational lower bound and the regression analysis for each cell type that
was used to withhold stimulated cells (Supplementary Figure S23). The relative performances in

Table 2. Mean variational lower bounds and mean coefficients of determination for counterfactual prediction. The
median and the interquartile range across replicate models of method are reported. Arrows indicate the optimal
direction, and the optimal results (based on the interquartile range) have been highlighted. For each metric,
optimal models for the scVAE-C methods were selected using each metric itself (Supplementary Note S6.4).

Method L ↑ R2
all ↑ R2

top ↑
raw counts

scVAE-CB −407.6 (−407.88–
−407.46) 0.918 (0.9163–

0.9209) 0.892 (0.8895–
0.8928)

scVAE-CM −406.6 (−406.61–
−406.58) 0.918 (0.9165–

0.9190) 0.883 (0.8812–
0.8840)

scVAE-CH −406.4 (−406.45–
−406.38) 0.851 (0.8443–

0.8552) 0.819 (0.8179–
0.8268)

scVAE-CHM −406.1 (−406.17–
−406.10) 0.863 (0.8523–

0.8694) 0.826 (0.8144–
0.8369)

scVI −417.8 (−417.86–
−417.73) 0.893 (0.8924–

0.8936) 0.883 (0.8817–
0.8838)

normalised counts

CVAE −847.6 (−847.69–
−847.40) 0.919 (0.9176–

0.9196) 0.862 (0.8622–
0.8646)

CoMP −761.4 (−761.74–
−761.37) 0.925 (0.9244–

0.9290) 0.880 (0.8759–
0.8853)
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variational lower bound across cell types are almost reversed for methods using normalised count
data (CVAE and CoMP) and methods applied to raw count data (remaining methods). The cell
types with the largest difference in performance are also the cell types with the largest shares of cells
in the data set. So CVAE and CoMP are better at modelling the test set (with all stimulated cells)
without having seen stimulated cells of these cell types in comparison to withholding them for other
cell types. For the other methods, it is the reverse.

The distributions of the coefficients of determination across cell types used to withhold stimulated
cells for each method are shown in Figure 5. R2 was generally high for all cell types and methods
(less so for the hierarchical scVAE-C methods) with low standard deviation, which means that the
methods were able to capture the covariate effects. On average, R2

all was also higher than R2
top except

in some cases. The coefficient of determination being higher for all genes than for the top-100 DEGs is
to be expected, since R2

all includes many genes not affected by IFN-β, and therefore their expressions
are similar for stimulated and control cells. R2

top were significantly lower than R2
all for monocytes for

most methods and dendritic cells in general. These cell types all have higher library sizes than the
other cell types, and cells with high library sizes are also somewhat less represented in the data set
(Supplementary Figures S3–S4).

The individual regression analyses for each cell type and method have been plotted in Supplemen-
tary Figures S24–S30. The top-five upregulated DEGs for each cell type have been highlighted, and all
methods mostly predict expressions for these correctly. As alluded to by the low standard deviation of
the coefficients of determination, the regression plots also show few outliers. The slopes of the linear
regression for most cell types and methods are also close to 1, except for the CD14 monocytes and
the CD4 T cells for the CVAE and CoMP methods Both methods predict counterfactual expression
levels significantly less than for truly stimulated CD14 monocytes and somewhat less than for truly
stimulated CD4 T cells. These cell types have the largest shares of cells (Supplementary Figure S3),
and the methods both use normalised count data. So even though a linear regression did fit for these
cell types and methods, the methods cannot predict the mean expression correctly, likely because
some of the signal for each cell type have been removed – partly by withholding stimulated cells and
partly by normalising the expression counts.

Figure 5. Distributions of coefficients of determination across withheld cell types for counterfactual prediction.
For each cell type and method, the mean and the standard deviation are shown for the median-performing replicate
model. Optimal models for scVAE-C methods were selected using the overall mean coefficient of determination for
each gene selection.
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3.2.3 Counterfactual expression profiles for key marker genes match factual expression profiles
For key marker genes, we also show a visual comparison of the counterfactual expression profiles to
the factual ones using dot plots. In Figure 6, we show a dot plot of the mean expression profiles for
factually unstimulated (control) cells, counterfactually stimulated cells, and factually stimulated cells
of different cell types across a selection of key marker genes. The counterfactually stimulated cells
were predicted from control cells using the best scVAE-C method, scVAE-CB. For the interferon-
independent cell-type markers CD79A (B cells), CD3D (T cells), CCL5 (CD8 T and NK cells),
GNLY (NK cells), FCGR3A (monocytes), S100A9 (CD14 monocytes), and HLA-DQA1 (dendritic
and B cells), there are no visually evident differences in mean expression level and expressing cell
fractions between the control and the stimulated cells. The model’s inferred expression of these
marker genes in stimulated cells matches the factual observations for all cell types. For the interferon-
response genes, there is a strong expression in stimulated cells, which is absent in unstimulated
cells. The model correctly predicts elevated levels of ISG15, IFI6, and IFIT1 across all cell types
upon interferon stimulation. The model further predicts a strong increase in CXCL10, CXCL11,
APOBEC3A in monocytes and dendritic cells. A more nuanced response of the DEFB1 gene in
monocytes is also inferred as observed. While CCl8 is overestimated in CD16 monocytes and dendritic
cells, it is correctly inferred to be elevated for CD14 monocytes, and correctly inferred to be not
elevated in all other cell types. Dot plots for the other methods show similar tendencies and can be
seen in Supplementary Figures S31–S37 together with the one for scVAE-CB.

3.2.4 Almost no correlations between variational lower bound and coefficients of determination
Lastly, we looked at correlations between mean coefficients of determination and mean variational
lower bound for the scVAE-C methods (Supplementary Figures S38). Using either all genes or the top-
100 DEGs, there seems to be a very slight negative correlation. This means that the mean variational
lower bound is not useful for selecting models for counterfactual prediction, but if used, it might lead
to worse results.

4 Discussion
In analysing latent-representation covariate removal and counterfactual prediction of gene expression
profiles, it is clear that different approaches are needed to achieve the best performance in each
analysis. We details these differences below.

4.1 Likelihood functions, conditioned covariates, and dropout regularisation
Using one of the constrained negative binomial distributions as likelihood function, conditional scVAE
models were able to attain the best variational lower bound and the best LISI medians in most cases.
However, there was no clear preference of likelihood function for counterfactual prediction – most
negative binomial distributions performed comparably.

Conditioning on library size together with stimulation status, models performed similarly to or
better than models using a constrained negative binomial distributions according to the variational
lower bound, the integration LISI median, and the mean coefficients of determination for counter-
factual prediction, except in a few cases. From this, it seems like we were able to achieve the same
effects of a more complicated likelihood function by simply conditioning the likelihood function in-
stead. However, the additional conditioning lead to cell-type LISI medians significantly higher than
only conditioning on the stimulation status. Since the likelihood function is only evaluated on how
well it can fit the actual scRNA-seq count data, it makes sense that reconstruction or counterfactual
prediction perform the same for the two approaches, while their latent representations differ: Stimu-
lated and control cells may have mixed, but so have cells of different cell types when conditioning on
library size.
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Figure 6. Dot plot of mean gene expressions for counterfactual prediction using the scVAE-CB method. For each
cell type and marker gene, the mean gene expressions across factual control, counterfactually stimulated, and
factually stimulated cells are shown. The counterfactually stimulated cells’s expression profiles were generated by
the median-performing replicate model. The optimal scVAE-CB model was selected by the mean coefficient of
determination using all genes.

Dropout regularisation improved variational lower bounds, had mostly little effect on latent-
representation covariate removal, and lead to mostly comparable counterfactual predictions for non-
hierarchical scVAE-C methods and worse ones for the hierarchical versions.

4.2 scVAE-CB best at counterfactual prediction for most varying genes
The base scVAE-C method, scVAE-CB, integrated stimulated and control cells in the latent repre-
sentation significantly better than the comparison methods. Mixing these cells, however, also led to
cell types being mixed to a higher degree than any of the other methods except the CoMP method.
The cell-type mixing was reduced for scVAE-CB when using dropout regularisation, but this lead to
worse integration of stimulated and control cells.

Conversely, scVAE-CB and CoMP performed the best overall at counterfactually predicting the
mean gene expression profiles of stimulated cells for each cell type. For all genes, CoMP performed
the best with CVAE, scVAE-CB, and scVAE-CM close to its result. CVAE is similar in structure to
scVAE-CB, so a similar performance is not unexpected. However, when using only the top-100 DEGs,
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scVAE-CB achieved the best results with scVAE-CM, scVI, and CoMP being close in performance.
As mentioned in §3.2, it is harder to predict expression levels for these genes, since they vary more
between stimulated and control cells by design. So it is notable that scVAE-CB attained better
counterfactual predictions for the most differentially expressed genes than the more complex CoMP
method. Both CVAE and CoMP use normalised count data, so the reason why they perform worse
for the top-100 DEGs might be because some of the variation is lost in the normalisation. CoMP’s
enforcement of independence of latent representation and covariates may still let it better encode the
variation that is left than CVAE.

scVI is also similar in structure to scVAE-CB like CVAE, but scVI also uses raw count data
like scVAE-CB, so one would expect it to perform similarly. However, since scVI by default does not
condition on covariates during inference and only during generation, this explains its poor performance
in latent-representation covariate removal. Additionally, the default choice of a free-dispersion zero-
inflated negative binomial distribution, which was not among the best for scVAE-CB, explains why
it did not perform as well as scVAE-CB for counterfactual prediction. The variational lower bound
for scVI was also worse than to the corresponding scVAE-CB model in both analyses.

4.3 scVAE-CH and scVAE-CHM best at removing covariate effects in their latent
representation

The hierarchical scVAE-C methods, scVAE-CH and scVAE-CHM, were able to simultaneously almost
completely separate stimulated and control cells in its first latent representation and closely integrate
them in its second latent representation. The separation of the two kind of cells was better than
the baseline TVSD method and only bested by MrVI (in its first latent representation), and the
integration was the best of the methods together with its normal-mixture version. At the same time,
cells of different cell types were also kept separate in both latent representations, even more separate
than the baseline method. Several other methods also achieved this, but they did not integrate
stimulated and control cells as well.

In contrast, scVAE-CH and scVAE-CHM were the worst at counterfactual prediction and also
varied the most between replicates. We also confirmed that the hierarchical scVAE-C methods were
worse at reconstruction than the non-hierarchical ones. This is likely because of the two layers of the
generative process in both methods resulting in more variation both in expression, but also between
replicates. Both kinds of variation are then exacerbated when the methods are used to predict coun-
terfactual expression, and variation in the neural networks introduced by dropout regularisation only
worsens this further. These methods perform counterfactual prediction the best by also conditioning
the first latent layer on library size and not by using a constrained negative binomial distribution
like the nonhierarchical versions. This could be because the conditioning on stimulation state and
library size is separate to each latent layer, so the first latent-layer transformation functions as a
normalisation step similar to the preprocessing of the raw count data. MrVI most closely resembles
scVAE-CH, and even though it performs better than scVI at integrating stimulated and control cells
while keep cell types separate, it still worse at the integration than all scVAE-C methods. This is
likely because the stimulation status of each cell is only used for generation and not inference like the
scVI method.

4.4 scVAE-CM is the best overall method
The base mixture scVAE-C methods, scVAE-CM, perform comparably to its non-mixture version
except in a few instances. scVAE-CM was significantly better than scVAE-CB at keeping cell types
separate while integrating stimulated and control cells, and it was among the best methods at this
task. However, scVAE-CM was worse than scVAE-CB at predicting counterfactual expressions for
the top-100 DEGs, but it was still comparable to CoMP and scVI. Overall, scVAE-CM was the only
method whose optimal models achieved competitive performance in all aspects of both analyses.

When also conditioning on library size and not only stimulation status, scVAE-CM models did
perform worse at counterfactual prediction in contrast to other scVAE-C methods. We saw that this
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lead to more mixing of cell types. Removing information about stimulation state and library size
at the same time would lead to an even more compressed latent representation that is harder to
counterfactually predict from for a method that expects multiple inherent clusters. A scVAE-CM
model could collapse to a scVAE-CB model by letting all but one mixture coefficient go towards zero,
but multiple modals might still fit a latent representation better, or early stopping might end the
training of the model beforehand.

4.5 Unbalanced data set and differences in preprocessing it
The Kang data set presented several challenges with its uneven distribution of cell types and the
large difference in expression between some of these cell types. This was especially the case for the
monocytes and dendritic cells which have significantly higher average library sizes than the other cell
types. Together, these cells are also somewhat underrepresented in the data set. Most methods had
difficulty counterfactually predicting the stimulated expression of the most varying genes for these
cell types. This might simply be because withholding stimulated cells of any of these cell types from a
model during training, the model would have seen more examples of cells with low library sizes than
with high library sizes.

Using raw or normalised scRNA-seq gene-expression counts was also a factor in how the methods
performed. Normalising the gene expression counts for CVAE and CoMP means that these methods
have less information to rely on for inference, but the counts seem to be easier to reconstruct – at
least for cell types with similar average library size. Excluding stimulated CD14 monocytes, which
are the second-most populous in the data set and one of the cell types with high library sizes, from
training in the analysis of the counterfactual expression profiles, supports the last observation: The
methods using the normalised counts are better at modelling the test set without having seen the
withheld cells, whereas it harder for the ones using raw counts. This might be because of the difference
in likelihood function with the former kind of methods using a normal distribution and the latter
kind using some version of the negative binomial distribution. As for inference, with less signal in
the normalised data, the methods would have to rely more on the covariates to encode the cells,
which could be the reason why the stimulated and control cells are less integrated in their latent
representations.

5 Conclusion
We have presented scVAE-C, which is a collection of methods for removing covariate effects from
lower-dimensional (latent) representations and counterfactually predicting gene expression profiles.
scVAE-C is based on the scVAE method (Grønbech et al., 2020), which include both a standard
variational autoencoder and a normal-mixture version (GMVAE) for modelling scRNA-seq data. Our
contributions were to add a conditional framework (Sohn et al., 2015) supporting multiple covariates,
an optional hierarchical latent structure, and some modifications to the GMVAE version of scVAE.
The methods we used for comparison each only support a different subset of this functionality, and
none of them has the same flexibility in choosing covariates built-in. We found that all scVAE-C
methods performed better than the comparison methods at removing covariate effects from their latent
representations with the hierarchical scVAE-C methods achieving the best results. For counterfactual
prediction, we observed that the nonhierarchical scVAE-C methods were competitive with the best
comparison methods, while the hierarchical scVAE-C methods performed the worst. The base mixture
scVAE-C method was the only method to achieve competitive results in both analyses.

The methods model scRNA-seq gene expression count data by conditioning on covariates, which
allows the methods to represent the data without the effects of these covariates, since the methods did
not have to attempt to model those effects themselves. Conditioning cells on covariates functioned for
the latent representation similar to a preprocessing step of regressing out covariates, like some forms
of batch correction, but since the covariate removal of the scVAE-C methods is built-in, biological
variation is not necessarily lost. For the hierarchical scVAE-C methods, removing covariate effects can
even be split between their two latent layers. Additionally, the generative processes of the methods
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are able to reconstruct the gene expression profiles of the cells or even counterfactually predict profiles
of the cells for different covariate values to various degrees of success.

We demonstrated this by applying the methods on the Kang data set (Kang et al., 2017), which
consists of PBMCs from Lupus patients with one half of the cells having been IFN-β stimulated.
By conditioning on the stimulation status, all scVAE-C methods, especially the hierarchical ones,
were able remove its effects and integrate the two kinds of cells to a high degree and better than
the methods we used for comparison: scVI (Lopez et al., 2018), MrVI (Boyeau et al., 2022), CVAE
(Sohn et al., 2015), and CoMP (Foster et al., 2022). All scVAE-C methods but the base one were also
able to keep the cell types almost completely separate – even more separate than a truncated SVD
factorisation of the data. However, when the scVAE-C methods were also conditioned on the library
sizes of the cells, cell types became somewhat mixed in the latent representations of the methods.
Here, constrained negative binomial distributions provided a better way to account for the library
size. As for counterfactual prediction, the base scVAE-C method performed best among the scVAE-C
methods. It was able to counterfactually predict the mean expression profiles for stimulated cells of
different cell types to a high degree comparable to the best comparison method, CoMP, especially
when focusing on only the most differentially expressed genes. Whereas the base mixture scVAE-C
method was close in performance to the base method, the hierarchical methods performed significantly
worse at this task.

From these results, we observed a trade-off for the conditional scVAE methods between perform-
ing well at removing covariates from latent representations and producing counterfactual expression
effectively. Looking at the variational lower bounds of the methods, they all consist of the sum of
an expected negative reconstruction error and one of more negative KL divergences or similar terms.
This is inherent to variational autoencoders: While the reconstruction error is optimised, the KL
divergence acts as a regulariser ensuring that the model does not overfit. A lower reconstruction error
signifies that a model is better able to reconstruct its input, and a lower KL divergence means the
latent representation better follow the prior distribution for the latent variable in question. So the
trade-off is built into the methods: For example, a decrease in reconstruction error can be partially
offset by an increase in one or more KL divergences and still result in an overall higher variational
lower bound. Complicating matters further, the reconstruction error does not take into account coun-
terfactual values and the KL divergence(s) do not measure how cells are mixing according to some
covariate. So one cannot assume that the variational lower bound or its components are good indi-
cators for latent-representation covariate removal or counterfactual prediction. This was supported
by the median integration and cell-type local inverse Simpson’s indices measuring the mixing of cells
as well as the mean coefficients of determination comparing counterfactual and factual expression
both being almost independent of the variational lower bound. With this trade-off, the base mixture
scVAE-C seems to achieve the best balance between the two analyses.

Because of the success of the covariate removal of the stimulation status, future work could
investigate how well the scVAE-C methods perform at integrating experiment batches and even
entire data sets. By treating different data sets as essentially other batches of a combined data set,
the methods should be able to integrate the data sets in their latent representations. We would then
like to examine if the methods are able to generate expression profiles of the cells without batch
effects or for combining and integrating multiple data sets.
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S1 Negative binomial distribution and variations thereof
The negative binomial distribution can be defined in several ways. We use the one implemented by the
TensorFlow Probability machine-learning software library (Dillon et al., 2017), which is used in the
implementation of scVAE-C. In this formulation, the distribution models x successes of a sequence of
Bernoulli (two-outcome) experiments given ρ failures and a probability of success for each Bernoulli
experiment of ω:

NB(x; ρ, ω) = (x + ρ − 1)!
x!(ρ − 1)! ωx(1 − ω)r, (S1)

This is a discrete probability function, but to better compute derivatives for optimisation during
training of scVAE-C models, we let x be a real number, and the factorials are then computed using
gamma functions, Γ(x) = (x−1)!. We also use different variations of the negative binomial distribution
detailed below.

S1.1 Zero-inflated negative binomial (ZINB) distribution
A zero-inflated model supposes that there exists an excess amount of zeros in a population and models
this subpopulation separately. This results in a mixture distribution, which for a zero-inflated negative
binomial distribution can be formulated as

ZINB(x; ρ, ω, ϵ) =
{

ϵ + (1 − ϵ)NB(x; ρ, ω), x = 0,

(1 − ϵ)NB(x; ρ, ω), x > 0,
(S2)

where ϵ is the probability of excess zeros. Because of the sparsity of scRNA-seq data, this distribution
has been proven to work favourably with this kind of data (Lopez et al., 2018).

S1.2 Constrained negative binomial (CNB) distribution
We were inspired to use this distribution by the constrained Poisson distribution (Salakhutdinov and
Hinton, 2009), which was also used in Grønbech et al. (2020). A constrained zero-inflated negative
binomial distribution is also the default choice for scVI Lopez et al. (2018) when not modelling the
size factor as a latent variable. To apply the same idea to the negative binomial distribution, we first
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need to reformulate the distribution using its mean. The mean ν of the negative binomial distribution
as formulated in equation (S1) is

ν = ρω

1 − ω
. (S3)

By replacing ω in equation (S1), we can reformulate the negative binomial distribution as

NB(x; ρ, ν) = (x + ρ − 1)!
x!(ρ − 1)!

(
ν

ν + ρ

)x(
ρ

ν + ρ

)r

. (S4)

Next, we need to consider all counts xn of a cell together as x. We then constrain the mean ν to
be equal to the library size ℓ, which is the sum of these counts, by reparameterisation:

ν = ℓτ , (S5)

where τ is a probability vector, which means that all components are non-negative and their sum is
1. In component form, this yields the constrained negative binomial distribution:

CNB(x; ρn, τn) = (x + ρn − 1)!
x!(ρn − 1)!

(
ℓτn

ℓτn + ρn

)x(
ρn

ℓτn + ρn

)r

, ℓ =
∑

n

xn, τn ≥ 0,
∑

n

τn = 1. (S6)

S1.3 Free-dispersion negative binomial (FDNB) distribution
In the formulation of the negative binomial distribution using its mean, equation (S4), ρ is sometimes
reparameterised as ρ = 1

α , and α is called the dispersion. In the main text, the parameters of a
negative binomial distribution are dependent on the latent variable z and conditions c:

NB(x; ρθ(z, c), ωθ(z, c)). (S7)

Letting the dispersion be a free variable simply means that the dispersion parameter or equivalently
the failure-count parameter ρ is independent of any variables and is learnt during training. This
results in the following formulation:

FDNB(x; ρθ(z, c), ωθ). (S8)

We were inspired to use this distribution by Lopez et al. (2018).

S1.4 Combining variations
Since the changes to the negative binomial distributions in the variations above are independent of
each other, these variations can all be combined with expected abbreviations. For example, FDCNB
stands for a free-dispersion constrained negative binomial distribution. All seven combinations as well
as the standard distribution are used.

S2 Conditional hierarchical scVAE (scVAE-CH)
In the following are presented the expressions for this method (the generative and inference processes
are reproduced for easy reference) as well as the derivation of some of these.

Generative process

pθ(x, z1, z2 | c) = pθ(x | z1) pθ(z1 | z2, c) p(z2), (S9a)

pθ(x | z1) =
N∏

n=1
NB(xn; ρθ

n(z1), ωθ
n(z1)), (S9b)

pθ(z1 | z2, c) = N (z1; µ1,θ(z2, c), σ2
1,θ(z2, c)I), (S9c)

pθ(z2) = N (z2; 0, I). (S9d)
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Inference process

qϕ(z1, z2 | x, c) = qϕ(z2 | z1, c) qϕ(z1 | x), (S10a)
qϕ(z2 | z1, c) = N (z2; µ2,ϕ(z1, c), σ2

2,ϕ(z1, c)I), (S10b)
qϕ(z1 | x) = N (z1; µ1,ϕ(x), σ2

1,ϕ(x)I). (S10c)

Variational lower bound
Following the derivation for a standard VAE method, we can separate the variational lower bound
for the conditional hierarchical scVAE method into multiple terms:

L(θ, ϕ; x, c) = Eqϕ(z1,z2 | x,c)

[
log pθ(x, z1, z2 | c)

qϕ(z1, z2 | x, c)

]

= Eqϕ(z2 | z1,c) qϕ(z1 | x)

[
log pθ(x | z1) pθ(z1 | z2, c) p(z2)

qϕ(z2 | z1, c) qϕ(z1 | x)

]

= Eqϕ(z1 | x)

[
Eqϕ(z2 | z1,c)

[
log pθ(x | z1) + log pθ(z1 | z2, c)

qϕ(z1 | x) + log p(z2)
qϕ(z2 | z1, c)

]]

= Eqϕ(z1 | x)[log pθ(x | z1)] − Eqϕ(z1 | x)

[
Eqϕ(z2 | z1,c)

[
log qϕ(z1 | x)

pθ(z1 | z2, c)

]]

− Eqϕ(z1 | x)[KL[qϕ(z2 | z1, c) ∥ p(z2)]].

(S11)

The first term is the expected negative reconstruction error, the second one is reminiscent of a negative
KL divergence for z1, and the last one is the expected negative KL divergence for z2 with regards to
qϕ(z1 | x). We refer to the second term as a pseudo KL divergence.

Reconstruction
To reconstruct x for the conditional hierarchical scVAE method, we apply the same idea as for the
base conditional scVAE method, but for each latent layer in sequence:

x̃(x, c) = Eqϕ(z1 | x)
[
Eqϕ(z2 | z1,c)

[
Epθ(z1 | z2,c)

[
Epθ(x | z1)[x]

]]]

=
∫∫∫ ∑

x′
x′ pθ(x′ | z′

1) pθ(z′
1 | z2, c) qϕ(z2 | z1, c) qϕ(z1 | x) dz′

1 dz2 dz1.
(S12)

Counterfactual prediction
As for the scVAE-CB method, to perform counterfactual prediction, we replace the factual covariate
values c in the remaining generative process with counterfactual covariate values c∗:

x∗(x, c, c∗) = Eqϕ(z1 | x)
[
Eqϕ(z2 | z1,c)

[
Epθ(z1 | z2,c∗)

[
Epθ(x | z1)[x]

]]]

=
∫∫∫ ∑

x′
x′ pθ(x′ | z′

1) pθ(z′
1 | z2, c∗) qϕ(z2 | z1, c) qϕ(z1 | x) dz′

1 dz2 dz1.
(S13)

S2.1 Latent-layer conditions
Instead of using the same set of covariates, c, for both latent layers, we could use two subsets of
covariates, c1 and c2, and condition on these separately. We show in the following how this is done,
and what changes follow from this.

Generative process

pθ(x, z1, z2 | c1, c2) = pθ(x | z1, c1) pθ(z1 | z2, c2) p(z2), (S14a)
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pθ(x | z1, c1) =
N∏

n=1
NB(xn; ρθ

n(z1, c), ωθ
n(z1, c)), (S14b)

pθ(z1 | z2, c2) = N (z1; µ1,θ(z2, c2), σ2
1,θ(z2, c2)I), (S14c)

pθ(z2) = N (z2; 0, I). (S14d)

This is shown in Supplementary Figure S1c as solid arrows.

Inference process

qϕ(z1, z2 | x, c1, c2) = qϕ(z2 | z1, c2) qϕ(z1 | x, c1), (S15a)
qϕ(z2 | z1, c2) = N (z2; µ2,ϕ(z1, c2), σ2

2,ϕ(z1, c2)I), (S15b)
qϕ(z1 | x, c1) = N (z1; µ1,ϕ(x, c1), σ2

1,ϕ(x, c1)I). (S15c)

This is shown in Supplementary Figure S1c as dashed arrows.

Variational lower bound

L(θ, ϕ; x, c1, c2) = Eqϕ(z1,z2 | x,c1,c2)

[
log pθ(x, z1, z2 | c1, c2)

qϕ(z1, z2 | x, c1, c2)

]

= Eqϕ(z1 | x,c1)[log pθ(x | z1, c1)]

− Eqϕ(z1 | x,c1)

[
Eqϕ(z2 | z1,c2)

[
log qϕ(z1 | x, c1)

pθ(z1 | z2, c2)

]]

− Eqϕ(z1 | x,c1)[KL[qϕ(z2 | z1, c2) ∥ p(z2)]].

(S16)

Reconstruction

x̃(x, c1, c2) = Eqϕ(z1 | x,c1)
[
Eqϕ(z2 | z1,c2)

[
Epθ(z1 | z2,c2)

[
Epθ(x | z1,c1)[x]

]]]

=
∫∫∫ ∑

x′
x′ pθ(x′ | z′

1, c1) pθ(z′
1 | z2, c2) qϕ(z2 | z1, c2) qϕ(z1 | x, c1) dz′

1 dz2 dz1.
(S17)

Counterfactual prediction

x∗(x, c1, c2, c∗
1, c∗

2) = Eqϕ(z1 | x,c1)
[
Eqϕ(z2 | z1,c2)

[
Epθ(z1 | z2,c∗

2)
[
Epθ(x | z1,c∗

1)[x]
]]]

=
∫∫∫ ∑

x′
x′ pθ(x′ | z′

1, c∗
1) pθ(z′

1 | z2, c∗
2)

× qϕ(z2 | z1, c2) qϕ(z1 | x, c1) dz′
1 dz2 dz1.

(S18)

This is illustrated in Supplementary Figure S2c.

S3 Conditional mixture scVAE (scVAE-CM)
A categorical stochastic latent variable y is added to the conditional scVAE method, and z is condi-
tioned on y to better model the underlying structure in the latent representation. This can be seen
as modelling the inherent clusters in the data. Below are shown the expression and derivations for
this method.
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Generative process
As in Grønbech et al. (2020), we use a normal-mixture model as the prior distribution for this method.
So y is modelled using a categorical distribution, and the prior for z, which is now a conditional prior,
is a multivariate normal distribution:

pθ(x, y, z | c) = pθ(x | z, c) pθ(z | y) pθ(y), (S19a)

pθ(x | z, c) =
N∏

n=1
NB(xn; ρθ

n(z, c), ωθ
n(z, c)), (S19b)

pθ(z | y) = N (z; µθ(y), σ2
θ(y)I), (S19c)

pθ(y) = Cat(y; πθ). (S19d)

The distribution parameters for the conditional prior for z are now given by y, and they are modelled
by neural networks. The prior distribution for y is a categorical distribution with mixture coefficient
πθ. πθ is a free variable learnt during training, which makes the mixture model able to adjust the
contribution of each component and even omit some components if they are not needed. The mixture
coefficient for omitted components will tend toward zero. The model graph is shown in Supplementary
Figure S1d as solid arrows.

Inference process
Unlike Grønbech et al. (2020), we separate the approximate posterior distributions for z and y:

qϕ(y, z | x, c) = qϕ(z | x, c) qϕ(y | x, c), (S20a)
qϕ(z | x, c) = N (z; µϕ(x, c), σ2

ϕ(x, c)I), (S20b)
qϕ(y | x, c) = Cat(y; πϕ(x, c)). (S20c)

Here, all distribution parameters are given by x and c and modelled using neural networks. In
Grønbech et al. (2020), qϕ(z | x, c) is also conditioned on y. However, we found that such a formulation
only works for smaller and simpler data sets when we condition on covariates. The model graph is
shown in Supplementary Figure S1d as dashed arrows.

Variational lower bound

L(θ, ϕ; x, c) = Eqϕ(y,z|x,c)

[
log pθ(x, y, z | c)

qϕ(y, z|x, c)

]

= Eqϕ(z | x,c) qϕ(y | x,c)

[
log pθ(x | z, c) pθ(z | y) pθ(y)

qϕ(z | x, c) qϕ(y | x, c)

]

= Eqϕ(y | x,c)

[
Eqϕ(z | x,c)

[
log pθ(x | z, c) + log pθ(z | y)

qϕ(z | x, c) + log pθ(y)
qϕ(y | x, c)

]]

= Eqϕ(y|x,c)
[
Eqϕ(z|x,c)[log pθ(x | z, c)]

]
− Eqϕ(y|x,c)[KL[qϕ(z | x, c) ∥ pθ(z | y)]]

− KL[qϕ(y | x, c) ∥ pθ(y)].

(S21)

The first term is the expected negative reconstruction error averaged over y, the second term is the
negative KL divergence for z also averaged over y, and the last term is the negative KL divergence
for y. Even though the reconstruction error is not dependent on y, we found that the method is more
robust when evaluating the reconstruction error for each component of y and averaging over them.
This makes this variational lower bound similar to the one for the GMVAE method in Grønbech et al.
(2020).
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Reconstruction

x̃(x, c) = Eqϕ(y|x,c)
[
Eqϕ(z | x,c)

[
Epθ(x | z,c)[x]

]]

=
∫ ∑

y

∑

x′
x′ pθ(x′ | z, c) qϕ(z | x, c) qϕ(y | x, c) dz.

(S22)

Counterfactual prediction

x∗(x, c, c∗) = Eqϕ(y|x,c)
[
Eqϕ(z | x,c)

[
Epθ(x | z,c∗)[x]

]]

=
∫ ∑

y

∑

x′
x′ pθ(x′ | z, c∗) qϕ(z | x, c) qϕ(y | x, c) dz.

(S23)

This is illustrated in Supplementary Figure S2d.

S4 Conditional hierarchical mixture scVAE (scVAE-CHM)
This is a combination of the conditional hierarchical scVAE and the conditional mixture scVAE
methods. Only the second (inner-most) latent variable is modelled using a normal-mixture model. To
highlight this, the categorical latent variable uses 2 as a subscript: y2. The expressions and derivations
for this method are shown in the following.

Generative process

pθ(x, y2, z1, z2 | c) = pθ(x | z1) pθ(z1 | z2, c) pθ(z2 | y2) pθ(y2), (S24a)

pθ(x | z1) =
N∏

n=1
NB(xn; ρθ

n(z1), ωθ
n(z1)), (S24b)

pθ(z1 | z2, c) = N (z1; µ1,θ(z2, c), σ2
1,θ(z2, c)I), (S24c)

pθ(z2 | y2) = N (z2; µ2,θ(y2), σ2
2,θ(y2)I), (S24d)

pθ(y2) = Cat(y2; π2,θ). (S24e)

As for the other methods, all distribution parameters are modelled using neural networks, except for
π2,θ which is a free variable. The model graph is shown in Supplementary Figure S1e as solid arrows.

Inference process

qϕ(y2, z1, z2 | x, c) = qϕ(z2 | z1, c) qϕ(y2 | z1, c) qϕ(z1 | x), (S25a)
qϕ(z2 | z1, c) = N (z2; µ2,ϕ(y2, z1, c), σ2

2,ϕ(y2, z1, c)I), (S25b)
qϕ(y2 | z1, c) = Cat(y2; π2,ϕ(z1, c)), (S25c)

qϕ(z1 | x) = N (z1; µ1,ϕ(x), σ2
1,ϕ(x)I). (S25d)

Again, all distribution parameters are modelled using neural networks – no exceptions. The model
graph is shown in Supplementary Figure S1e as dashed arrows.
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Variational lower bound

L(θ, ϕ; x, c) = Eqϕ(y2,z1,z2 | x,c)

[
log pθ(x, y2, z1, z2 | c)

qϕ(y2, z1, z2 | x, c)

]

= Eqϕ(z2 | z1,c)qϕ(y2 | z1,c) qϕ(z1 | x)

[
log pθ(x | z1) pθ(z1 | z2, c) pθ(z2 | y2) pθ(y2)

qϕ(z1 | x) qϕ(z2 | z1, c) qϕ(y2 | z1, c)

]

= Eqϕ(z1 | x)

[
Eqϕ(y2 | z1,c)

[
Eqϕ(z2 | z1,c)

[
log pθ(x | z1) + log pθ(z1 | z2, c)

qϕ(z1 | x)

+ log pθ(z2 | y2)
qϕ(z2 | z1, c) + log pθ(y2)

qϕ(y2 | z1, c)

]]]

= Eqϕ(z1 | x)[log pθ(x | z1)]

− Eqϕ(z1 | x)

[
Eqϕ(y2 | z1,c)

[
Eqϕ(z2 | z1,c)

[
log qϕ(z1 | x)

pθ(z1 | z2, c)

]]]

− Eqϕ(z1 | x)
[
Eqϕ(y2 | z1,c)[KL[qϕ(z2 | z1, c) ∥ pθ(z2 | y2)]]

]

− Eqϕ(z1 | x)[KL[qϕ(y2 | z1, c) ∥ pθ(y2)]].

(S26)

Here, the first term is the expected negative reconstruction error while the other three terms are
negative (pseudo) KL divergences for z1, z2, and y2, respectively, with respect to relevant distributions.
The second term is averaged over y even though the distributions are independent of y. As with the
scVAE-CM method, we found that this made the method more robust.

Reconstruction

x̃(x, c) = Eqϕ(z1 | x)
[
Eqϕ(y2 | z1,c)

[
Eqϕ(z2 | z1,c)

[
Epθ(z1 | z2,c)

[
Epθ(x | z1)[x]

]]]]

=
∫∫∫ ∑

y2

∑

x′

(
x′ pθ(x′ | z′

1) pθ(z′
1 | z2, c)

× qϕ(z2 | z1, c) qϕ(y2 | z1, c) qϕ(z1 | x)
)

dz′
1 dz2 dz1.

(S27)

Counterfactual prediction

x∗(x, c, c∗) = Eqϕ(z1 | x)
[
Eqϕ(y2 | z1,c)

[
Eqϕ(z2 | z1,c)

[
Epθ(z1 | z2,c∗)

[
Epθ(x | z1)[x]

]]]]

=
∫∫∫ ∑

y2

∑

x′

(
x′ pθ(x′ | z′

1) pθ(z′
1 | z2, c∗)

× qϕ(z2 | z1, c) qϕ(y2 | z1, c) qϕ(z1 | x)
)

dz′
1 dz2 dz1.

(S28)

This is illustrated in Supplementary Figure S2e.

S4.1 Latent-layer conditions
As with the conditional hierarchical scVAE method, the mixture one can also use a different subset
of covariates for each latent layer (y2 belongs to the z2 layer). This is done in the same way as in
Supplementarty Text S2.1.

Generative process

pθ(x, y2, z1, z2 | c1, c2) = pθ(x | z1, c1) pθ(z1 | z2, c2) pθ(z2 | y2) pθ(y2), (S29a)

pθ(x | z1, c1) =
N∏

n=1
NB(xn; ρθ

n(z1, c), ωθ
n(z1, c)), (S29b)
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pθ(z1 | z2, c2) = N (z1; µ1,θ(z2, c2), σ2
1,θ(z2, c2)I), (S29c)

pθ(z2 | y2) = N (z2; µ2,θ(y2), σ2
2,θ(y2)I), (S29d)

pθ(y2) = Cat(y2; π2,θ). (S29e)

This is shown in Supplementary Figure S1f as solid arrows.

Inference process

qϕ(y2, z1, z2 | x, c1, c2) = qϕ(z2 | z1, c2) qϕ(y2 | z1, c2) qϕ(z1 | x, c1), (S30a)
qϕ(z2 | z1, c2) = N (z2; µ2,ϕ(y2, z1, c2), σ2

2,ϕ(y2, z1, c2)I), (S30b)
qϕ(y2 | z1, c2) = Cat(y2; π2,ϕ(z1, c2)), (S30c)
qϕ(z1 | x, c1) = N (z1; µ1,ϕ(x, c1), σ2

1,ϕ(x, c1)I). (S30d)

This is shown in Supplementary Figure S1f as dashed arrows.

Variational lower bound

L(θ, ϕ; x, c1, c2) = Eqϕ(y2,z1,z2 | x,c1,c2)

[
log pθ(x, y2, z1, z2 | c1, c2)

qϕ(y2, z1, z2 | x, c1, c2)

]

= Eqϕ(z1 | x)[log pθ(x | z1, c1)]

− Eqϕ(z1 | x,c1)

[
Eqϕ(y2 | z1,c2)

[
Eqϕ(z2 | z1,c2)

[
log qϕ(z1 | x, c1)

pθ(z1 | z2, c2)

]]]

− Eqϕ(z1 | x,c1)
[
Eqϕ(y2 | z1,c2)[KL[qϕ(z2 | z1, c2) ∥ pθ(z2 | y2)]]

]

− Eqϕ(z1 | x,c1)[KL[qϕ(y2 | z1, c2) ∥ pθ(y2)]].

(S31)

Reconstruction

x̃(x, c) = Eqϕ(z1 | x,c1)
[
Eqϕ(y2 | z1,c2)

[
Eqϕ(z2 | z1,c2)

[
Epθ(z1 | z2,c2)

[
Epθ(x | z1,c1)[x]

]]]]

=
∫∫∫ ∑

y2

∑

x′

(
x′ pθ(x′ | z′

1, c1) pθ(z′
1 | z2, c2)

× qϕ(z2 | z1, c2) qϕ(y2 | z1, c2) qϕ(z1 | x, c1)
)

dz′
1 dz2 dz1.

(S32)

Counterfactual prediction

x∗(x, c, c∗) = Eqϕ(z1 | x,c1)
[
Eqϕ(y2 | z1,c2)

[
Eqϕ(z2 | z1,c2)

[
Epθ(z1 | z2,c∗

2)
[
Epθ(x | z1,c∗

1)[x]
]]]]

=
∫∫∫ ∑

y2

∑

x′

(
x′ pθ(x′ | z′

1, c∗
1) pθ(z′

1 | z2, c∗
2)

× qϕ(z2 | z1, c2) qϕ(y2 | z1, c2) qϕ(z1 | x, c1)
)

dz′
1 dz2 dz1.

(S33)

This is illustrated in Supplementary Figure S2f.

S5 Details regarding analyses
Additional information about the analyses are detailed below.
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S5.1 Hyperparameters for analyses
To compute local inverse Simpson’s indices, we use the Python package harmonypy1, which is based
on the R package Harmony (Korsunsky et al., 2019), and the default perplexity of 30 is used for these
computations.

We use ScanPy (Wolf et al., 2018) to compute UMAP embeddings, and we use the default neigh-
bourhood size of 15 and the default minimum distance of 0.5 for these computations.

S5.2 Computing statistics for the correlation of determination
To estimate the mean and standard deviation of correlation of determination, we use m-out-of-n
bootstrapping with replacement (Bickel et al., 2011) where resampling only uses a subset of cells. As
in Lotfollahi et al. (2019), we use a subset that is 80 % of the cell population used for evaluation and
resample 100 times.

S6 Detailed experiment setup
Below different parts of the experiment setup are explained in more detail.

S6.1 Model setup
All neural networks consist of two intermediate (hidden) layers with 100 units each, while the number
of units of the output layer depends on the parameter that is modelled. All continuous latent variables
have a dimension of 10, so µ and σ2 layers have this number of units. For the mixture methods, we use
15 components to have about two components on average to model each of the Kang data set’s eight
cell types. Therefore, the πϕ layer has that many units, but since πθ is a free variable and not fixed,
a model is not forced to use all components (see Supplementary Note S3). The remaining distribution
parameters are all for the likelihood function, so the number of units for the corresponding output
layers are therefore equal to the number of genes.

Additionally, the intermediate layers use a rectifier function, fReLU(x) = max(0, x), as activation
function and employ batch normalisation (Ioffe and Szegedy, 2015) as well as dropout regularisation
(Hinton et al., 2012) in some cases (see Supplementary Note S6.3). The parameter output layers all
use activation functions appropriate to each parameter: the identity function; a sigmoid function,
fsigmoid(x) = 1

1+e−x (Han and Moraga, 1995), for single probability parameters; the softplus function,
fsoftplus(x) = log(1 + ex) (Dugas et al., 2000), for parameters with only positive support; or the
softmax function (Bridle, 1990) for normalising probability-vector parameters. Outputs are always
clipped before any exponentiation to avoid numerical under- or overflow. This is all summarised in
Supplementary Table S1.

S6.2 Training procedure
Models are trained using the Adam optimisation method (Kingma and Ba, 2014) using a mini-batch
size of 64, a learning rate of 10−3, and a gradient-clipping norm of 3. They are trained for 400 epochs
with an early-stopping scheme as well as a warm-up scheme (Bowman et al., 2016; Sønderby et al.,
2016) for the first 50 epochs. In the warm-up scheme, any (psuedo) KL divergence in the computation
of the variational lower bound is multiplied by a variable β which is linearly increased from 0 to 1
during the warm-up.

S6.3 Configuration search
Configuration searches are performed for each method to determine the optimal combination of
likelihood function, set of conditions, and dropout regularisation. For the likelihood function, we test
the negative binomial distribution as well as the seven variations detailed in Supplementary Note S1.
The constrained negative binomial distribution is one way to make the model depend directly on
1Available at https://github.com/slowkow/harmonypy
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library size. Another way is to directly condition on library size (in addition to the integration
covariate). We test this by either conditioning only on the integration covariate and using all negative
binomial distributions or conditioning on both integration covariate and library size and using all non-
constrained negative binomial distributions. How the different methods are conditioned are listed in
Supplementary Table S2. Additionally, we test whether using a dropout rate of 0.1 or not for the
intermediate layers improves the performance.

S6.4 Model selection
To select the optimal models for each method, we could just use the variational lower bound, since
this was optimised during training. However, this does not necessarily lead to the best performance
for all analyses. Instead, we use a metric relevant for each analysis. We use the median test iLISI for
the analysis of latent-representation covariate removal. We only use this metric since we are interested
in how the selected models perform in mixing other covariates. For the analysis of the counterfactual
expression profiles, we use the mean test coefficients of determination: R2

all for all genes and R2
top

when using only the top-100 DEGs. This is because we are interested in how models selected by these
metrics perform against each other. As an exception, for reporting the optimal test variational lower
bound, we still use the metric itself for model selection. Note that the metrics for each model are the
result of taking the median over the five replicates trained for that model.

S6.5 Comparison methods
Because of their implementation, scVI and MrVI use a different combination of examples from the
training and validation sets for training and validation for each replicate. Also the training–validation
split is 80 % instead of 75 % (60 % of 80 % of the full data set), which the other methods are trained
with. Therefore, we can only compare scVAE-C to these methods using the test set.

Since CVAE, CoMP, and scVI are VAEs with only one single latent layer, we denote their latent
representation by z. MrVI is hierarchical method with two latent layers: A stochastic latent variable
u which models the data free of a specified covariate, and a deterministic latent variable z which is a
sum of u and sources of variation specific to another covariate. Comparing the layers of MrVI with
those of the hierarchical scVAE-C methods, we use z1 for MrVI’s z latent variable and z2 for its u
latent variable.

The hyperparameter optimisation of CVAE and CoMP was performed in two steps. First, a
learning-rate sweep for values 10−3, 10−4, 10−5, and 10−6 was performed using a neural-network
architecture with one layer of 512 units and a latent dimension of 40. With the chosen learning rate,
a sweep of neural-network architectures was performed. One, two, and three layers were tested with
either 128, 256, or 512 units per layer and a latent dimension of either 10 or 40. For both CVAE and
CoMP, this resulted in a learning rate of 10−3, neural networks using one layer of 512 units, and a
latent dimension of 40. For scVI, the default parameters were used: a learning rate of 10−3, neural
networks using one layer of 128 units, and a latent dimension of 10. For MrVI, the default parameters
were also used: a learning rate of 10−2, an encoder of two layers of each 128 units, two decoders with
one layer of 32 units each, and a dimension of 10 for both latent variables. Early stopping was enabled
for all comparison models.

For each final configuration, models were trained trained five times each with different random
seeds. We used scVI with its zero-inflated negative binomial distribution with free dispersion similar to
scVAE-C (Supplementary Note S1.3) as likelihood function. MrVI uses a standard negative binomial
distribution, and CVAE and CoMP uses a normal distribution. By default, scVI and MrVI do not
use conditioned covariates for inference, but only use them for generating gene expression counts. All
comparison methods use the stimulation status as condition for the Kang data set. MrVI’s z1 (z) layer
is used for conditioning, and the reconstruction is not conditioned on any additional covariate, since
it can only be conditioned on categorical information, and no other relevant categorical covariates
are available in the Kang data set.
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S7 Conditioning priors on covariates
Below we show how to condition the prior distribution of all conditional scVAE methods on covariates
c.

S7.1 scVAE-CB
To condition the prior distribution of z for the scVAE-CB method on the covariates c, we simply
assume z to follow a normal distribution with parameters dependent on c:

pθ(z | c) = N (z; µθ(c), σ2
θ(c)I), (S34)

where the mean and standard deviation are given c and modelled using neural networks. This replaces
pθ(z) in all relevant formulations for the scVAE-CB method.

S7.2 scVAE-CM
The conditional mixture scVAE method has two prior distributions: one for y and a conditional one
for z. For both, we again make the parameters dependent on c:

pθ(z | y, c) = N (z; µθ(y, c), σ2
θ(y, c)I), (S35a)

pθ(y | c) = Cat(y; πθ(c)). (S35b)

The parameters of the prior distribution of z are now also given by c in addition to y, and they
are still modelled using neural networks. The probability vector πθ is not a free parameter in this
instance and instead given by c and also modelled using neural networks. pθ(z | y, c) and pθ(y | c)
replaces pθ(z | y) and pθ(y), respectively, in all relevant formulations for the scVAE-CM method.

S7.3 scVAE-CH
We condition the prior distribution of the conditional hierarchical scVAE method on c in the same
way as for the scVAE-CB method (see Supplementary Note S7.1):

pθ(z2 | c) = N (z; µ2,θ(c), σ2
2,θ(c)I). (S36)

Alternatively, when using latent-layer conditions, we can introduce another condition subset c3 and
condition the prior on this instead:

pθ(z2 | c3) = N (z; µ2,θ(c3), σ2
2,θ(c3)I). (S37)

Either of these replace pθ(z) in all relevant formulations for the scVAE-CH method.

S7.4 scVAE-CHM
We combine the ways to condition the prior distributions of the conditional mixture and hierarchical
scVAE methods on c to do the same for the conditional hierarchical mixture scVAE method (see
Supplementary Notes S7.2–S7.3):

pθ(z2 | y2, c) = N (z2; µ2,θ(y2, c), σ2
2,θ(y2, c)I), (S38a)

pθ(y2 | c) = Cat(y2; π2,θ(c)). (S38b)

Or alternatively with latent-layer conditions:

pθ(z2 | y2, c3) = N (z2; µ2,θ(y2, c3), σ2
2,θ(y2, c3)I), (S39a)

pθ(y2 | c3) = Cat(y2; π2,θ(c3)). (S39b)

Each set of equations replaces the corresponding set of prior distributions in all relevant formulations
for the scVAE-CHM method.
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S8 Supplementary Tables

Table S1. Properties of neural-network layers of different kinds. For output layers the parameter being modelled is
used to represent the layer kind.

Kind Layer count Unit count Activation Normalisation Dropout rate
Intermediate 2 100 Rectifier Batch Variablea

µ (all) 1 10 Identify None None
σ2 (all) 1 10 Softplus None None
πϕ (all) 1 15 Softmax None None
ρθ 1 n Softplus None None
ωθ 1 n Sigmoid None None
ϵθ 1 n Softmaxb None None
τ θ 1 n Softmax None None
a Whether the intermediate layers use dropout regularisation depends on the configuration search

(Supplementary Note S6.3.)
b The softmax function is not used to normalise ϵθ over all n components, but to normalise ϵn and

1 − ϵn (see equation S2) for each component n.

Table S2. Conditions for each method and each set of conditions. The first set of conditions uses only stimulation
status, s, whereas the second set of conditions uses both stimulation status and library size, ℓ. Note that for the
hierarchical methods we use the notation for condition subsets introduced in Supplementary Note S2.1.

Method Stimulation status Stimulation status, library size
c c1 c2 c c1 c2

scVAE-CB s — — s, ℓ — —
scVAE-CM s — — s, ℓ — —
scVAE-CH — s None — ℓ s
scVAE-CHM — s None — ℓ s
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Table S3. Software libraries used by the scVAE-C implementation.

Software library Purpose Reference
TensorFlow Modelling Abadi et al. (2015)
TensorFlow Probability Modelling Dillon et al. (2017)
anndata Input/output Virshup et al. (2021)
pandas Input/output McKinney (2010)
Loompy Input https://loompy.org
seaborn Visualisation Waskom (2021)
Matplotlib Visualisation Hunter (2007)
scikit-learn Visualisation Pedregosa et al. (2011)
SciPy Sparse matrices Virtanen et al. (2020)
NumPy Various Harris et al. (2020)
natsort Natural sorting https://github.com/SethMMorton/natsort

Table S4. Software libraries used by the implementation of preprocessing, experiment setup, and analyses for
scVAE-C.

Software library Purpose Reference
Scanpy Input, computation, and

visualisation
Wolf et al. (2018)

anndata Input Virshup et al. (2021)
pandas Input/output and computation McKinney (2010)
NumPy Computation Harris et al. (2020)
harmonypy LISI computation https://github.com/slowkow/harmonypy
seaborn Visualisation Pedregosa et al. (2011)
Matplotlib Visualisation Hunter (2007)
textalloc Visualisation https://github.com/ckjellson/textalloc
tol_colors Visualisation https://personal.sron.nl/~pault/

Table S5. Configurations of the optimal model of each scVAE-C method and for each metric for latent-
representation covariate removal.

Method Metric Likelihood function Conditioned covariates Dropout rate
scVAE-CB L CNB Stimulation status 0.1
scVAE-CB ̂iLISI FDCNB Stimulation status 0
scVAE-CM L CNB Stimulation status 0.1
scVAE-CM ̂iLISI FDNB Stimulation status 0
scVAE-CH L CNB Stimulation status 0.1
scVAE-CH ̂iLISI CNB Stimulation status 0.1
scVAE-CHM L CNB Stimulation status 0.1
scVAE-CHM ̂iLISI FDCZINB Stimulation status 0.1
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Table S6. Configurations of the optimal model of each scVAE-C method and for each metric for counterfactual
prediction.

Method Metric Likelihood function Conditioned covariates Dropout rate
scVAE-CB L NB Stimulation status, library size 0.1
scVAE-CB R2

all FDCZINB Stimulation status 0
scVAE-CB R2

top ZINB Stimulation status 0
scVAE-CM L CNB Stimulation status 0.1
scVAE-CM R2

all FDCZINB Stimulation status 0.1
scVAE-CM R2

top FDCNB Stimulation status 0.1
scVAE-CH L CNB Stimulation status 0.1
scVAE-CH R2

all NB Stimulation status, library size 0
scVAE-CH R2

top NB Stimulation status, library size 0
scVAE-CHM L CNB Stimulation status 0.1
scVAE-CHM R2

all FDNB Stimulation status, library size 0
scVAE-CHM R2

top FDNB Stimulation status, library size 0
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(a) scVAE-CB. (b) scVAE-CH.

(c) scVAE-CH with latent-layer conditions.

(d) scVAE-CM. (e) scVAE-CHM.

(f) scVAE-CHM with latent-layer conditions.

Figure S1. Model graphs of the generative and inference processes for the scVAE-C methods. Circles represent
observed (grey) and latent (white) variables, and arrows indicate the directions of the generative (solid) and
inference (dashed) processes.
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(a) scVAE-CB. (b) scVAE-CH.

(c) scVAE-CH with latent-layer conditions.

(d) scVAE-CM. (e) scVAE-CHM.

(f) scVAE-CHM with latent-layer conditions.

Figure S2. Model graphs of counterfactual prediction for the scVAE-C methods. Circles represent observed
(grey), latent (white), and counterfactual (light grey) variables. Arrows indicate the directions of the inference
process (dashed) and the counterfactual generative process (solid).
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Figure S3. Histogram of stimulated and control cells of different cell types for the Kang data set.

Figure S4. Distributions of library sizes for stimulated and control cells of different cell types for the Kang data
set. The kernel density estimate, median, and interquartile range are shown for each group of cells. The kernel
density estimates are normalised to display with the same width.

Figure S5. UMAP embedding of the truncated SVD representation of the Kang data set. The embedding is
coloured by stimulation state, cell type, and library size.
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Figure S6. Variational lower bound for all scVAE-C models for latent-representation covariate removal. The
median and the interquartile range across replicate models are shown. Results for the comparison methods are also
displayed.
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Figure S7. Median integration LISIs for all scVAE-C models for latent-representation covariate removal. The
median and the interquartile range across replicate models are shown separately for the latent representation(s) of
each method. Results for the comparison methods are also displayed.
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Figure S8. Median cell-type LISIs for all scVAE-C models for latent-representation covariate removal. The
median and the interquartile range across replicate models are shown separately for the latent representation(s) of
each method. See Supplementary Figure S9 for results for the models only conditioning on stimulation status.
Results for the comparison methods are also displayed.
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Figure S9. Median cell-type LISIs for all scVAE-C models only conditioned on stimulation status for
latent-representation covariate removal. The median and the interquartile range across replicate models are shown
separately for the latent representation(s) of each method. Results for the comparison methods are also displayed.
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(a) Variational lower bound.

(b) Median integration LISI.

(c) Median cell-type LISI.

Figure S10. Metrics for latent-representation covariate removal. The median and the interquartile range across
replicate models of each method are shown. For each metric, optimal models for the scVAE-C methods were
selected using the metric itself, except for the median cell-type LISI for which the median integration LISI was used.
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Figure S11. Distributions of cell-level iLISIs across cell types for latent-representation covariate removal. For the
stimulation-state-conditioned latent representation of each method, the kernel density estimate, median, and
interquartile range are shown for the median-performing replicate model. Optimal models were used for the
scVAE-C methods. The kernel density estimates were normalised by the cell count of each cell group. The median
and the interquartile range across all cells for the decomposed representation of the baseline TSVD method are
also shown.
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(a) Integration LISI (reproduced for easy comparison).

(b) Cell-type LISI.

Figure S12. Distributions of cell-level LISIs for latent-representation covariate removal. For the latent
representation(s) of each method, the kernel density estimate, median, and interquartile range are shown for the
median-performing replicate model. Optimal models were used for the scVAE-C methods. The kernel density
estimates were normalised to display with the same area. The median and the interquartile range for the
decomposed representation of the baseline TSVD method are also shown.
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Figure S13. UMAP embeddings of latent representations for latent-representation covariate removal coloured by
stimulation state. Embeddings are shown for the median-performing replicate model, and the optimal models for
the scVAE-C methods were selected using the median iLISI.
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Figure S14. UMAP embeddings of latent representations for latent-representation covariate removal coloured by
cell type. Embeddings are shown for the median-performing replicate model, and the optimal models for the
scVAE-C methods were selected using the median iLISI.
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Figure S15. UMAP embeddings of latent representations for latent-representation covariate removal coloured by
library size. Embeddings are shown for the median-performing replicate model, and the optimal models for the
scVAE-C methods were selected using the median iLISI.
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(a) Median integration LISI.

(b) Median cell-type LISI.

Figure S16. Relationship between LISI medians and variational lower bound for latent-representation covariate
removal. The median and the interquartile range across replicate models are shown separately for the latent
representation(s) of each method.

29



Figure S17. Mean variational lower bound for all scVAE-C models for counterfactual prediction. The median and
the interquartile range across replicate models are shown. Results for the comparison methods are also displayed.

30



Figure S18. Mean coefficient of determination using all genes for all scVAE-C models for counterfactual
prediction. The median and the interquartile range across replicate models are shown. Results for the comparison
methods are also displayed.
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Figure S19. Mean coefficient of determination using the top-100 DEGs for all scVAE-C models for counterfactual
prediction. The median and the interquartile range across replicate models are shown. Results for the comparison
methods are also displayed.
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(a) Mean variational lower bound.

(b) Mean coefficients of determination.

Figure S20. Metrics for counterfactual prediction. The median and the interquartile range across replicate
models of each method are shown. For each metric, optimal models for the scVAE-C methods were selected the
using the metric itself (separately for each gene selection for the mean coefficient of determination).
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Figure S21. Optimal mean coefficient of determination for reconstruction. The median and the interquartile
range across replicate models of each method are shown. Optimal models for the scVAE-C methods were selected
by the metric itself. No cells were withheld during training, and mean coefficient of determination for each method
were taken across the cell groups detailed in Supplementary Figure S22.

Figure S22. Distributions of coefficients of determination across cell type and stimulation state for
reconstruction. All models used for reconstruction as the same as the models used for latent-representation
covariate removal. As such, no cells were withhold during training. The coefficient of determination is computed by
comparing the reconstructed mean gene expression level for each gene across each group of stimulated or control
cells for each cell type to true mean expression level. The mean and the standard deviation are shown for each
group of cells and each method using the median-performing replicate. Optimal models for the scVAE-C methods
were selected by the metric itself.
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(a) Variational lower bound.

(b) Coefficients of determination (reproduced for easy comparison).

Figure S23. Distributions of metrics across withheld cell types for counterfactual prediction. For each cell type
and method, results are shown for the median-performing replicate model, and the mean and the standard deviation
are displayed for the coefficients of determination. Optimal models for the scVAE-C methods were selected for each
metric the using the metric itself (separately for each gene selection for the mean coefficient of determination).
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Figure S24. Regression plots for counterfactual prediction using scVAE-CB. Results are shown for the median-
performing replicate model. The top-5 DEGs for each cell type are highlighted. A 95 % confidence interval is shown
for the linear regression estimated using bootstrapping by resampling 1000 times. The optimal scVAE-CB model
was selected by the mean coefficient of determination using all genes.

Figure S25. Regression plots for counterfactual prediction using scVAE-CM. Results are shown for the median-
performing replicate model. The top-5 DEGs for each cell type are highlighted. A 95 % confidence interval is shown
for the linear regression estimated using bootstrapping by resampling 1000 times. The optimal scVAE-CM model
was selected by the mean coefficient of determination using all genes.
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Figure S26. Regression plots for counterfactual prediction using scVAE-CH. Results are shown for the median-
performing replicate model. The top-5 DEGs for each cell type are highlighted. A 95 % confidence interval is shown
for the linear regression estimated using bootstrapping by resampling 1000 times. The optimal scVAE-CH model
was selected by the mean coefficient of determination using all genes.

Figure S27. Regression plots for counterfactual prediction using scVAE-CHM. Results are shown for the median-
performing replicate model. The top-5 DEGs for each cell type are highlighted. A 95 % confidence interval is shown
for the linear regression estimated using bootstrapping by resampling 1000 times. The optimal scVAE-CHM model
was selected by the mean coefficient of determination using all genes.
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Figure S28. Regression plots for counterfactual prediction using scVI. Results are shown for the median-
performing replicate model. The top-5 DEGs for each cell type are highlighted. A 95 % confidence interval is shown
for the linear regression estimated using bootstrapping by resampling 1000 times.

Figure S29. Regression plots for counterfactual prediction using CVAE. Results are shown for the median-
performing replicate model. The top-5 DEGs for each cell type are highlighted. A 95 % confidence interval is shown
for the linear regression estimated using bootstrapping by resampling 1000 times.
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Figure S30. Regression plots for counterfactual prediction using CoMP. Results are shown for the median-
performing replicate model. The top-5 DEGs for each cell type are highlighted. A 95 % confidence interval is shown
for the linear regression estimated using bootstrapping by resampling 1000 times.
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Figure S31. Dot plot of mean gene expressions for counterfactual prediction using scVAE-CB (reproduced for
easy comparison). For each cell type and marker gene, the mean gene expressions across control, stimulated, and
counterfactually stimulated cells are shown. The counterfactually stimulated cells were generated by the
median-performing replicate model. The optimal scVAE-CB model was selected by the mean coefficient of
determination using all genes.
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Figure S32. Dot plot of mean gene expressions for counterfactual prediction using scVAE-CM. For each cell type
and marker gene, the mean gene expressions across control, stimulated, and counterfactually stimulated cells are
shown. The counterfactually stimulated cells were generated by the median-performing replicate model. The
optimal scVAE-CM model was selected by the mean coefficient of determination using all genes.
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Figure S33. Dot plot of mean gene expressions for counterfactual prediction using scVAE-CH. For each cell type
and marker gene, the mean gene expressions across control, stimulated, and counterfactually stimulated cells are
shown. The counterfactually stimulated cells were generated by the median-performing replicate model. The
optimal scVAE-CH model was selected by the mean coefficient of determination using all genes.
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Figure S34. Dot plot of mean gene expressions for counterfactual prediction using scVAE-CHM. For each cell
type and marker gene, the mean gene expressions across control, stimulated, and counterfactually stimulated cells
are shown. The counterfactually stimulated cells were generated by the median-performing replicate model. The
optimal scVAE-CHM model was selected by the mean coefficient of determination using all genes.
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Figure S35. Dot plot of mean gene expressions for counterfactual prediction using scVI. For each cell type and
marker gene, the mean gene expressions across control, stimulated, and counterfactually stimulated cells are
shown. The counterfactually stimulated cells were generated by the median-performing replicate model.
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Figure S36. Dot plot of mean gene expressions for counterfactual prediction using CVAE. For each cell type and
marker gene, the mean gene expressions across control, stimulated, and counterfactually stimulated cells are
shown. The counterfactually stimulated cells were generated by the median-performing replicate model.
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Figure S37. Dot plot of mean gene expressions for counterfactual prediction using CoMP. For each cell type and
marker gene, the mean gene expressions across control, stimulated, and counterfactually stimulated cells are
shown. The counterfactually stimulated cells were generated by the median-performing replicate model.
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(a) Mean coefficient of determination using all genes.

(b) Mean coefficient of determination using the top-100 DEGs.

Figure S38. Relationship between mean coefficients of determination and mean variational lower bound for
counterfactual prediction. The median and the interquartile range across replicate models are shown of each
method.
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Abstract

Single-cell RNA-sequencing (scRNA-seq) has transformed our understand-
ing of cell types, states, and regulatory networks governing health and dis-
eases. The big-data multi-dimensional single-cell datasets require scalable
deep-learning approaches for optimal representation, clustering, and fast run-
times to enable meaningful biological interpretation. Here we present scAAE,
an adversarial autoencoder approach for representation-based learning from
scRNA-seq data. Applying scAAE to simulated and real small and large
datasets, we demonstrate an improved statistical performance in reference
clustering, cell-type identification, and biologically meaningful interpretation.
By designing an early-stopping clustering evaluation strategy, scAAE enables
improved clustering and outcompetes other methods in benchmarks. scAAE
is implemented in Python using the TensorFlow machine-learning library and
is freely available at https://github.com/Natarajanlab/scaae.

1 Introduction
Approaches based on machine learning, especially deep learning, are rapidly being used in biology and
provides unprecedented insights in different fields including microscopy, image processing, and others
(Wu et al., 2019; Hallou et al., 2021; Ching et al., 2018). Machine-learning methods typically take an
input data set and partition it into non-overlapping training and test sets. The training set is used
to learn the data structures or patterns and then assessed on the test set. The learnt predictions can
therefore be applied to any other data set of the same kind as the original one. Deep-learning methods
can effectively take large datasets and find data substructures that are not easily interpretable and
identifiable using conventional traditional approaches. These methods are based on artificial neural
networks that use multiple layers to extract data structures or patterns within the input data. The
aim is to capture different aspects of the data structures or patterns across individual layers and
ascertain which features are the best descriptors.
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Single-cell transcriptomics serves as a powerful tool to identify cell-states within populations of
cells and to dissect underlying heterogeneity at high resolution. The emergence of single-cell genomics
revolutionised our understanding of tissue complexity in normal and diseased tissues and large efforts
are directed toward cataloguing all cell types across a number of organisms. Several deep-learning
methods have been proposed and used for single-cell RNA-sequencing (scRNA-seq). The different
applications and tools include cell-type identification, composition, and detection (CellAtlasSearch,
Srivastava et al., 2018; CaSTLe, Lieberman et al., 2018; scQuery, Alavi et al., 2018; Dhaka, Rashid
et al., 2019; scScope, Deng et al., 2019; scMatch, Hou et al., 2019; SAVER-X, Wang et al., 2019;
rCASC Alessandr̀ı et al., 2019; CellAssign, Zhang et al., 2019; scPred, Alquicira-Hernandez et al.,
2019); batch-effect removal or merging (scVI, Lopez et al., 2018; scMerge, Lin et al., 2019; SAVER-
X); visualisation (SIMLR, Wang et al., 2017; netSNE, Cho et al., 2018; VASC, Wang and Gu, 2018;
scVI; scVAE, Grønbech et al., 2020); dimensionality reduction (ZIFA, Pierson and Yau, 2015; SIMLR;
VASC; SWNE, Wu et al., 2018; scVAE); clustering (SIMLR, CaSTLe, scVAE); cell-type detection and
perturbation response (scGen, Lotfollahi et al., 2019); imputation (ALRA, Linderman et al., 2018;
TRANSLATE, Badsha et al., 2020); multi-omics (MAGAN, Amodio and Krishnaswamy, 2018); and
multi-utility (scVI; SAUCIE, Amodio et al., 2019).

We have several contributions. First, we implement scAAE, an adversarial autoencoder (AAE,
Makhzani et al., 2016) for scRNA-seq data. AAEs are based on generative adversarial networks (GAN,
Goodfellow et al., 2014) and variational autoencoders (VAE; Kingma and Welling, 2014; Rezende
et al., 2014) and perform inference by matching an encoding distribution of a hidden vector of the
autoencoder with an arbitrary distribution. This enables an AAE to map its input to a compressed
representation. Second, we demonstrate that scAAE is able to find a compressed representation that
is optimal for clustering of scRNA-seq data sets. To do this, we implement an early-stopping scheme
performing clusterings and evaluation of these clusterings during optimisation. This is enabled by
recent developments in using GPUs for more machine-learning methods (RAPIDS, 2023). Third, we
show that scAAE performs as good or better than scVI in most cases across both simulated and
multiple real scRNA-seq data sets. Fourth, we provide scAAE as a publicly available software tool.

2 Methods and materials
We have developed, implemented, and made use of several methods and techniques to model gene
expression counts of individual cells from scRNA-seq data as well as to cluster these cells. In this
section, we describe these methods and techniques as well as how we assess them and which data sets
we use for this task.

2.1 Adversarial autoencoders

We start by representing a single cell as a vector x, and each of its components xn corresponds to the
gene expression count of gene n. To improve the clustering of cells, we want to find a representation
that captures the essential covariation between genes across cells and cluster this representation
instead. Such a representation z should have features that are (nonlinear) combinations of gene
counts, and it should have fewer features than genes used for x. Having fewer features enforces
combinations of gene counts, and it also makes the clustering faster. We refer to this representation
as a latent representation, and the function that encodes x to z we refer to as the encoder. To assess
how accurately z represents x, we also want to find a function that can decode z back to x, and we
refer to this as the decoder. The encoder and the decoder together form an autoencoder (Kramer,
1991, 1992). We model the encoder and the decoder as probability distributions and let x and z be
stochastic variables. qϕ(z |x) represents the encoder distribution parameterised by ϕ, and pθ(x | z)
represents the decoder distribution parameterised by θ.

Ensuring that the autoencoder generalises and does not overfit, we regularise it by enforcing
the latent variable z to follow a certain latent distribution p(z). This is achieved by integrating a
generative adversarial network (GAN, Goodfellow et al., 2014) into the autoencoder. The purpose of
a generative adversarial network is to generate samples from a desired data distribution and consists of
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two neural networks: a generator and a discriminator. The generator is optimised to generate samples
resembling data from the desired data distribution, and the discriminator is optimised to discriminate
between generated samples and samples from the desired data distribution. This optimisation is done
in alternating stages. For our purposes, a discriminator is added to the autoencoder with z as input
either from the encoder distribution qϕ(z |x) or from the latent distribution p(z) as seen in Figure 1.
The encoder of the autoencoder will also function as the generator of the generative neural network. In
this way, the discriminator will force the encoder distribution conform to the latent distribution. This
combination of autoencoder and generative neural network constitutes the adversarial autoencoder
(Makhzani et al., 2016).

2.2 Choosing encoding to and regularisation of latent features

The encoder distribution is chosen to be a multivariate normal distribution with mean and variance
as functions of x:

qϕ(z |x) = N (z;µϕ(x),σ2
ϕ(x)I), (1)

where µϕ(x) and σϕ(x) are modelled using deep neural networks. As an example, µϕ(x) can be
modelled using a feed-forward neural network with K layers:

µϕ(x) = aK , (2a)

ak = hk(Wkak−1 + bk), (2b)

a0 = x. (2c)

Here, ak is the output (activation) of the kth layer, Wk and bk are the weights and bias of the
kth layer and components of ϕ, and hk(·) is an element-wise nonlinear transformation (activation
function). The activation function of the Kth layer, hK(·) is chosen as an appropriate function for
the distribution parameter. In this way, the latent features become stochastic nonlinear combinations
of the gene expression counts.

The discriminator is also modelled as a probability distribution and it is parameterised by ω:

pω(y | z) = B(y; 1, τω(z)), (3)

where y is the verdict of the discriminator and is a binary variable signifying if a sample z comes
from the latent distribution or if it is generated:

y =

{
0, z ∼ qϕ(z |x),

1, z ∼ p(z).
(4)

Since y is binary, a Bernoulli distribution B(1, ·) is used as the discriminator distribution, and τω(z)
is the probability of y = 1, and it is modelled using a deep neural network similarly to µϕ(x) in

Fig. 1. Model graph for the adversarial autoencoder. Circles represent variables that are observed (dark grey),
reconstructed (light grey), and latent (white). The rhombi symbolise deterministic variables such as the
distribution parameters. The black rectangles denote neural networks, and arrows indicate input and output.
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equation (2). To match the encoder distribution, the latent distribution, which z should follow, is
chosen to be a multivariate standard normal distribution:

p(z) = N (z;0, I). (5)

2.3 Modelling standardised and raw gene expression counts

The decoder distribution is chosen to be appropriate for the data it models, and we model both stan-
dardised and raw gene expression counts. For counts that have been log-normalised and standardised,
a multivariate normal distribution with unitary covariance is used:

pθ(x | z) = N (x;νθ(z), I), (6)

where νθ(z) is function of z. The reconstruction x̃ of x is the mean of pθ(x | z), and this is νθ in this
instance.

For raw counts, we test several discrete probability distributions. The simplest of these is the
Poisson (P) distribution, which models a count with just an expected rate. Since x is a vector, we
model a separate distribution for each component xn and let the product of these be the decoder
distribution:

pθ(x | z) =
∏

n

P(xn;λ(θ)
n (z)), (7)

where λ
(θ)
n (z) is the expected count rate of gene n and a function of z. The rates for all genes compose

the rate parameter vector λθ(z). We also test a negative binomial (NB) distribution to account for
the overdispersion in gene expression data, since this distribution models both the expected count
and the dispersion. To account for the sparsity of scRNA-seq data, we additionally test zero-inflated
versions of the Poisson and negative binomial distributions (ZIP and ZINB, respectively). A zero-
inflated distribution adds excess zeros to another distribution with a certain probability, which is
modelled in addition to the parameters of the other distribution. For instance, a zero-inflated Poisson
(ZIP) distribution is expressed as follows:

ZIP(x;π, λ) =

{
π + (1 − π)P(x;λ), x = 0,

(1 − π)P(x;λ), x > 0,
(8)

where π is probability of excess zeroes. These distributions are used as the decoder distribution in
the same way as the Poisson distribution, and their parameters are also functions of z. All parameter
vectors are modelled using deep neural networks similarly to the parameters are in §2.2. We use
feed-forward neural networks for this, since we do not know how all genes depend on each other, and
since assuming they are independent simplifies the computation.

2.4 Optimisation of adversarial autoencoders

The adversarial autoencoder is optimised using a stochastic-gradient-descent algorithm. In each op-
timisation step, different parts of the adversarial autoencoder are optimised in three phases. The
first phase is the reconstruction phase, where the encoder and the decoder are optimised together to
obtain the best reconstruction of the gene expression counts. The objective (or loss) function for the
autoencoder for a single data point is computed as follows:

LAE(θ,ϕ;x) = −Eqϕ(z |x)[log pθ(x | z)]. (9)

Because the probability distribution parameters are modelled using neural networks, evaluating the
expected value exactly becomes intractable. Instead, Monte Carlo sampling is used to provide an
estimate:

LAE(θ,ϕ;x) ≈ − 1

R

R∑

r=1

Ez(r)∼qϕ(z |x)
[
log pθ(x | z(r))

]
, (10)
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where R is the number of Monte Carlo samples. To be able to backpropagate gradients when sampling
from qϕ(z |x), the reparameterisation trick is used (Kingma and Welling, 2014). The autoencoder loss
(AEL) function is minimised by summing over all M cells x(m) with respect to θ and ϕ:

min
θ,ϕ

M∑

m=1

LAE(θ,ϕ;x(m)). (11)

Next is the discriminator regularisation phase. Here the discriminator is optimised to distinguish
between generated samples and samples from the latent distribution. This is done by evaluating the
expected value of the discriminator distribution function with respect to first the encoder distribution
and then the latent distribution:

LD(ω;x) = − 1

2

(
Eqϕ(z |x)[log pω(y = 0 | z)] + Ep(z)[log pω(y = 1 | z)]

)
,

≈− 1

2R

R∑

r1=1

Ez(r1)∼qϕ(z |x)
[
log pω(y = 0 | z(r1))

]

− 1

2R

R∑

r2=1

Ez(r2)∼p(z)

[
log pω(y = 1 | z(r2))

]
,

(12)

In this way, for each cell x(m) R samples are drawn from the encoder distribution and R samples are
drawn from the latent distribution, and y is set depending on which distribution was sampled from
according to equation (4). The discriminator loss (DL) function is also minimised in the same way as
the autoencoder loss function but only with respect to the discriminator parameterisation ω.

The last phase is the generator regularisation phase, where the generator is optimised to generate
samples that look like they are from the latent distribution. By evaluating the expected value of the
discriminator distribution function with respect to the encoder distribution, but indicating to the
discriminator that the latent distribution was used (y = 1), this is achieved:

LG(ϕ;x) = −Eqϕ(z |x)[log pω(y = 1 | z)] = − 1

R

R∑

r=1

Ez(r)∼qϕ(z |x)
[
log pω(y = 1 | z(r))

]
. (13)

The half factor in equation (12) makes the discriminator loss function comparable to this loss function.
The generator loss (GL) function is also minimised as the other loss functions but only with respect
to the encoder parameterisation ϕ.

2.5 Comparison of adversarial and variational autoencoders

A variational autoencoder is similar in structure to an adversarial autoencoder (Supplementary Fig-
ure S1). Like an AAE, an VAE also consists of an encoder and a decoder to map its input to a latent
representation and back. The encoder and decoder are also modelled as probability distributions,
qϕ(z |x) and pθ(x | z), and the latent representation is encouraged to follow a certain probability
distribution, p(z). The main difference between the two methods lies in how this regularisation is
encouraged. Whereas an AAE uses an adversarial framework by introducing a discriminator to dis-
tinguish between samples from the encoder and the latent distributions, a VAE is variational Bayesian
method. This results in the following single loss function for the VAE:

LVAE(θ,ϕ;x) = −Eqϕ(z |x)[log pθ(x | z)] − KL(qϕ(z |x)∥p(z)). (14)

Here, the first term is the same as the autoencoder loss in equation (9), and the second term is
the Kullback–Leibler (KL) divergence between qϕ(z |x) and p(z). The KL divergence measures the
similarity between two distributions and is only zero if the two are the same distribution.

The single loss function for the VAE means that the encoder and decoder are optimised at the
same time and are forced to compromise between a latent representation that follows p(z) and a
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reconstruction that match the input. In contrast, an AAE has three loss functions that are optimised
separately (albeit in consecutive sequence), where the decoding is decoupled from the regularisation.
This enables the decoder and the discriminator to focus on each of their respective tasks, so the
decoder can better accept a wider variety of samples from the encoder such as samples that also
follow p(z). This would allow that the adversarial autoencoder to produce a latent representation
that more fully follow the chosen latent distribution than the variational autoencoder can, in general.
By choosing an appropriate latent distribution, this could be advantageous when you want to achieve
a latent representation that is more easily clustered – even for complex data such as scRNA-seq data.
Makhzani et al. (2016) includes more discussion of adversarial and variational autoencoders with
examples.

2.6 Clustering, evaluation, and visualisation of the latent representation

Our objective is to find a better representation of the data to cluster, but none of the optimised loss
functions measures this. So in addition to evaluating those, we also cluster the latent representation
and compute several clustering metrics. The clustering is performed using two similar clustering
methods, the Louvain method (Blondel et al., 2008) and the Leiden method (Traag et al., 2019).
The Louvain method is a method for finding communities in a network graph and has been used for
single-cell analysis (Levine et al., 2015), and the Leiden method improves upon the Louvain method.
A neighbourhood graph of the latent representation is used as the network graph, and it is computed
as the Euclidean distances between the mean values of the encoder distribution, and these are simply
µϕ(x).

We measure both supervised and unsupervised clustering metrics of the clusterings of the latent
representations. The supervised clustering metrics compare the clusterings to a reference clustering,
and we evaluate the adjusted rand index (ARI; Hubert and Arabie, 1985) and the adjusted mutual
information (AMI, Vinh et al., 2009). Both have a value of 1 for two identical clusterings and an
expected value of 0. The unsupervised clustering metrics evaluate how well the clusterings partition
the single-cell representation by measuring Euclidean distances based on gene expression counts.
We compute the following three ones. The silhouette coefficient (SC; Rousseeuw, 1987) is a value
between −1 and 1 with a high value signifying that similar data points are clustered together and
that dissimilar data points are not. The Calinski–Harabasz index (CHI; Calinski and Harabasz, 1974)
is bound below by 0, and higher values indicate that clusters are dense and well separated from each
other. The Davies–Bouldin index (DBI; Davies and Bouldin, 1979) is also bounded below by 0, but
conversely better divisions of the data achieve lower values.

Finally, we also evaluate the method by visualising the latent representation. This is done by
plotting a UMAP embedding (McInnes et al., 2018) of the mean values of the encoder distribution –
identical to what is used for clustering the latent representations.

2.7 Preventing model collapse with early stopping

There are several challenges when training a model in a generative-adversarial-network framework
(Mescheder et al., 2018). One such challenge is that training an adversarial model can result in mode
collapse, meaning that they generate similar output regardless of input (Goodfellow et al., 2014). To
avoid this, some adversarial methods employ early stopping using a metric other than the generator or
discriminator losses (Borji, 2018). For instance, GANs for image generation use metrics that compare
the similarity of generated images to real images (Salimans et al., 2016; Heusel et al., 2018; Zhang
et al., 2018).

Since our aim is to find a better representation to cluster, we can use one of the clustering metrics
in §2.6 for early stopping by clustering the latent representation during training. Because of recent
developments in using GPUs for data science in general (RAPIDS, 2023), it possible to perform the
clustering after each epoch of training without slowing down the actual training significantly. We
investigate both the unsupervised case where we do not have any cell-type information as well as a
semi-supervised case where a separate data set with known cell types is used only for clustering and

6



evaluation of the clustering. For the unsupervised case we use the unsupervised clustering metrics,
and for the semi-supervised case we use the supervised clustering metrics.

Because of the way the weights and biases of the neural networks are usually initialised, the latent
representation will start out resembling a Gaussian hypersphere before splitting into clusters. This
means that very few clusters will be found initially, which will result in unfairly good unsupervised
clustering metrics. This is especially a problem for smaller data set, where fewer examples are seen
each epoch. Therefore, early stopping is delayed by a certain amount of epochs at the beginning of
training.

2.8 Noise methods for training the discriminator

Another problem with training GANs and related models is that the discriminator can overfit easily
(Yazici et al., 2020). One way to fix this is to add noise to the discriminator during training (Feng et al.,
2021), and we have explored several methods to do this. One method is label flipping (Yang et al.,
2022), where label refers to the verdict y of the discriminator. This consists of changing the verdicts
provided to the discriminator for a subset of generated and true samples from true to generated or
generated to true:

y∗ =

{
¬y, u ≥ r,

y, otherwise,
(15)

where u is drawn from a uniform distribution between 0 and 1, U[0,1], and where r ∈ [0, 1] is the rate
of the label flipping. Another method is label smoothing (Szegedy et al., 2015), where uniform noise
is added to or subtracted from the verdict to ensure 0 ≤ y ≤ 1:

y∗ =

{
y + u, y = 0,

y − u, y = 1,
(16)

where u ∼ U[0,s] with s ∈ [0, 1] being the smoothing scale. The two last methods entail adding
Gaussian noise to either the verdicts (label noise) or the gene expression counts (instance noise;
Sønderby et al., 2016) with a standard deviation d.

2.9 Data sets

We use both simulated and real scRNA-seq data sets to test our method, and they are all listed
in Table 1. The simulated data sets are generated by modelling noise and expression counts based
on real scRNA-seq data distributions, varying the numbers of cells (3000–10 000 cells) and features
(2000–3000 genes) as well as the a priori defined number of clusters (two, five, and ten cell types)
obtained with real scRNA-seq datasets. We generated three data sets: SIM-2, SIM-5, and SIM-10,
where the number signifies the number of clusters in the corresponding data set.

As for real data, we use scRNA-seq dataset from peripheral mononuclear blood cells (PBMC)
that is widely benchmarked and is used as a gold standard for several studies (Zheng et al., 2017;

Table 1. Overview of scRNA-seq gene expression data sets.

Data set Cell count Gene count HV gene count Cell-type count

SIM-2 3 000 2 000 — 2
SIM-5 3 000 3 000 — 5
SIM-10 10 000 3 000 — 10
PBMC-3k 2 638 32 738 1838 8
PBMC-8k 7 475 33 694 1330 8
PBMC-10k 11 090 33 538 2145 12
PBMC-68k 68 551 32 738 1483 11
PBMC-92k 92 014 32 738 1570 9
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Hao et al., 2021; Lopez et al., 2018). Specifically, we use 5 PBMC data sets of varying sizes from
10x Genomics (sources listed Supplementary Table S1): PBMC-3k, PBMC-8k, PBMC-10k, PBMC-
68k, and PBMC-92k, where the number indicates the number of cells in thousands, approximately.
Each PBMC data set is preprocessed in the same manner as for scRNA-seq data using ScanPy (Wolf
et al., 2018). We first remove cells with few genes detected, followed by removing genes detected in
less than 5 % of cells. Next, the data set is normalised to have the same library size for each cell
and then log-transformed, followed by selecting highly variable (HV) genes (Stuart et al., 2019) and
removing the remaining genes. Then, the original library size and the percentage of mitochondrial
genes expressed in each cell is regressed out using linear regression (Satija et al., 2015), and finally
the data set is standardised (to have zero mean and unit variance). We refer to the final preprocessed
gene expression counts as standardised counts.

To evaluate the performance of our method, we need a reference clustering for each data set. For the
simulated data set, we use the predefined cluster information. For the PBMC data sets, we use either
the author-annotated clusters or specific cell-type labels, when available. For the smaller PBMC data
sets (PBMC-3k, PBMC-8k, and PBMC-10k), author-annotated labels were not available. Therefore,
we cluster the cells using the Louvain or Leiden community clustering with resolution parameters that
result in reasonable clusters (that is, individual cell types), which are annotated using marker genes
(Supplementary Table S2). The larger data sets (PBMC-68k and PBMC-92k) have been previously
analysed (Zheng et al., 2017). The PBMC-92k data set is composed of nine different data sets of
purified cell populations (listed in Supplementary Table S1), and we use these cell populations as the
reference clustering. For the PBMC-68k data set, the PBMC-92k data set and another data set of
a CD14+ monocytes and dendritic cells were used to correlate gene expression profiles and generate
cell-type labels (Zheng et al., 2017), which we use as reference clustering.

2.10 Experiment setup

The data sets are each split into a training set, a validation set, and a test set. The simulated data
sets and the small PBMC data sets use 80 % for the training set and 10 % for the validation and test
sets, while the larger PBMC data sets use 60 % for the training set and 20 % for the two other sets.
The models are trained using the training sets, early stopping and model selection are performed
using the validation sets, and the models are evaluated using the test sets.

A number of configuration searches are performed to find the optimal configurations for each data
set. The first is the architecture search for the deep neural networks for the encoder, the decoder, and
the discriminator as well as the dimension of the latent representation. The encoder and decoder are
tested with two-layer networks, and the discriminator is tested with networks of two to five layers. See
Supplementary Table S3 for the specifics, which also specifies the standard neural network architecture
used below. This network architecture search is performed with no added discriminator noise and
using standardised gene expression counts. Next is the search for discriminator noise methods. Two
experiments were run for each method in §2.8 as well as for a mixture of all methods: one with
a small noise parameter value and one with a large one (Supplementary Table S4). The standard
network architecture and standardised counts were used for this. The final configuration search is for
the decoder distribution for raw counts where the four discrete probability distributions introduced
in §2.3 are tested. These experiments are run using the standard network architecture and without
a discriminator noise. For comparison, a reference model using the standard network architecture,
standardised counts, and no discriminator noise has been included in the searches for noise methods
and decoder distributions for raw counts.

Since the Louvain and Leiden methods often require parameter tuning, we perform a parameter
search during clustering of the latent representation of the validation and test sets and report the best
overall value for each clustering metric (Supplementary Table S5). Because parts of the clustering
evaluation cannot be GPU-accelerated, we run the experiments for the configuration searches without
early stopping and perform the clustering hyperparameter search at a certain interval (Supplementary
Table S6). For each metric, we can then find the epoch with the most optimal value, effectively
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employing early stopping with a step size of the evaluation interval.

For the PBMC data sets, we then train models with early stopping using each of the optimisation
losses and clustering metrics. The models use combinations of the best configurations for each metric.
For network architecture and noise methods, we choose the two most optimal ones. Since the autoen-
coder loss function and the unsupervised clustering metrics are computed using the gene expression
counts, they depend on whether these have been log-normalised and standardised. As such, these
metrics cannot be compared across standardised and raw counts. This is especially relevant for the
autoencoder loss. Therefore, we choose the two most optimal discrete probability distributions for
the decoder distribution when using raw counts, and we use the normal distribution for standardised
counts. For clustering metrics, we perform a smaller clustering hyperparameter search at each epoch
(Supplementary Table S5).

All experiments are run with three replicates, and results are reported for the run with the median
metric. The loss functions were optimised using the Adam optimisation algorithm (Kingma and Ba,
2014) with a mini-batch size of 64, a learning rate of 10−4 for the autoencoder loss and of 10−5

for the discriminator and generator losses, and a learning decay rate of 10−6. Batch normalisation
(Ioffe and Szegedy, 2015) and dropout regularisation (Hinton et al., 2012) with a rate of 0.1 was
also used. A leaky rectified linear function (Maas et al., 2013) with a negative slope coefficient of
0.2 is used as activation function for the hidden layers in the neural networks. For numeric stability,
computation of the loss functions are performed in logarithmic space, and therefore most of the
probability distribution parameters are modelled as logarithms, and as such an identity activation
function is used for the output of the neural networks for these parameters. The only exceptions are
for the standard deviation of normal distributions and the overdispersion parameter of the negative
binomial distributions, which both use the softplus activation function (Dugas et al., 2000).

scAAE is compared to a baseline method as well as scVI. The baseline method consists of decom-
posing the standardised counts of the test set to 50 principal components and performing the same
clustering hyperparameter search as for scAAE on these. For scVI, models are trained with default
parameters, and the clustering hyperparameter search is performed using the latent representations
of the models.

2.11 Software implementation

scAAE has been implemented in Python using the using the machine-learning software libraries
TensorFlow (Abadi et al., 2015) for optimisation, RAPIDS (2023) for clustering, and scikit-learn
(Pedregosa et al., 2011) for some evaluations. AnnData (Virshup et al., 2021) is used for reading
scRNA-seq data, and Scanpy (Wolf et al., 2018) is used for preprocessing and visualisation. This
implementation is open source and platform-independent, and the source code is freely available
online1.

3 Results
3.1 Simulated scRNA-seq data

We first tested our method using the three simulated scRNA-seq data sets with different number of
cell populations: SIM-2, SIM-5, and SIM-10. UMAP embeddings of the test set of each data set can be
seen in Supplementary Figure S2. The cell populations in these data sets are completely separated,
and the baseline method also manages to obtain a test adjusted rand index of 1 for all three of
them. scAAE models with various network architectures, discriminator noise methods, and decoder
distributions were trained and evaluated on the data sets and early stopping was employed using
different metrics. The test adjusted rand indices obtained by the median-performing run of these
models and early-stopping metrics are plotted in Supplementary Figures S3–S11. Several results can
be observed from these figures and are summarised below.

1https://github.com/Natarajanlab/scAAE
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With any of the early-stopping metrics, a test adjusted rand index of 1 was obtained for all
network architectures and for all noise methods for the three data sets except in a few cases. Using
some of the loss metrics for early stopping, a few network architectures achieved a worse test ARI
for the SIM-2 and the SIM-5 data sets (Supplementary Figures S3–S4). For the SIM-10 data set,
about half of the network architectures and most of the noise methods resulted in a worse value with
loss-metric early stopping (Supplementary Figures S5 and S8). Inspecting the latent representations
of these unsuccessful models, we found that the correct number of groups are represented, but the
clustering hyperparameter search was not extensive enough, resulting in groups being partitioned into
two or sometimes multiple divisions (examples are shown in Supplementary Figures S12a and S12c).
For the SIM-5 data set when using any of the unsupervised clustering metrics for early stopping,
three network architectures also achieved a test ARI less than 1 (Supplementary Figure S4). For
these network architectures, two groups formed one cluster in the validation latent representation
early during training, and this representation achieved a higher value for the unsupervised clustering
metrics than it did in later epochs (example shown in Supplementary Figure S12b). So for these
experimenters using clustering metrics for early stopping vastly outperformed using loss metrics for
the same. All network architectures and all noise methods with a worse test adjusted rand index did
still achieve values above 0.6.

Models trained on the raw counts and using discrete probability distributions for the decoder
distribution were mostly unsuccessful in attaining a test adjusted rand index of 1. All discrete prob-
ability distributions resulted in values between 0.3 and 0.6 for the SIM-2 data set and between 0.4
and 0.7 for the SIM-10 data set (Supplementary Figures S9 and S11, respectively). For the SIM-5
data set, however, Poisson distributions did achieve values of 1 when using some the metrics for
early stopping (Supplementary Figure S10). In the remaining cases and for the negative binomial
distributions, models obtained values between 0.7 and 0.9. Examining the latent representation of
the unsuccessful models, the clusters are more oblong in the UMAP embeddings compared to models
using the standardised counts, and the clustering algorithms are more prone to divide groups into
multiple parts (examples shown in Supplementary Figures S12d–f).

3.2 PBMC data sets

We then tested our method using the five PBMC scRNA-seq data sets of varying sizes: PBMC-3k,
PBMC-8k, PBMC-10k, PBMC-68k, and PBMC-92k. We performed various configuration searches
for the different early-stopping metrics as with the simulated data sets, and we then trained models
with the most optimal configurations and compared the performance of the early-stopping metrics.

3.2.1 Model selection

Models were trained with several network architectures, discriminator noise methods, and decoder
distributions on the PBMC data sets using early stopping with the chosen metrics. The test adjusted
rand indices obtained by the median-performing run of these models and early-stopping metrics are
plotted in Supplementary Figures S13–S27. The results for both the test adjusted rand indices and
the validation metrics used for early stopping and model selection are summarised in the following.

Almost all network architectures using any of the early-stopping metrics achieved comparable
test adjusted rand indices for the PBMC-3k data set, but all obtained a value significantly higher
than the baseline method (Supplementary Figure S13). Results were more mixed for the PBMC-8k
and PBMC-10k data sets, ranging from significantly lower than the baseline to significantly higher
for almost all of the early-stopping metrics (Supplementary Figures S14–S15). For the PBMC-68k
and PBMC-92k data sets, using different network architectures resulted in test adjusted rand indices
comparable to the baseline method with some lower than it (Supplementary Figures S16–S17). In
general, models using smaller or mid-sized autoencoder architectures achieved the highest test ARIs,
except for PBMC-10k data set where using any autoencoder architecture with a higher-dimensional
representation performed the best. Using deeper discriminator networks improved the performance
in most cases for all data sets.
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When we used the autoencoder loss to stop the various network-architecture models early, we
observed that the test ARI and the validation autoencoder loss was positively correlated to various
degrees: strong for the PBMC-8k, -68k, and -92k data sets and less so for the other ones. Furthermore,
the validation autoencoder loss was also positively correlated with the overall size of the autoencoder.
This means that generally using the largest architectures results in the highest (optimal) validation
autoencoder losses, but the lowest test ARIs, and the reverse. A smaller positive correlation between
the test ARI and the early-stopping metric was also observed when using the validation discriminator
loss, especially for the larger data sets. We did not find any other clearer patterns, except a positive
correlation between the test ARI and both of the validation supervised clustering metrics for the
PBMC-92k data set (Supplementary Figure S17).

Comparing models with added discriminator noise to the reference model without any added
noise, we see that adding noise resulted in test ARIs either comparable to the reference model or
higher than it in most cases for PBMC-3k, -8k, and -10k data sets (Supplementary Figures S18–S20).
It proved especially beneficial for the PBMC-8k data set, where at least one model with added noise
obtained a test ARI significantly higher than the baseline. However, none of the data sets had any
favoured noise method. For the larger data sets, the noise methods had less of an effect with results
being comparable to that of the reference model (Supplementary Figures S21–S22), and they also
showed no preference for a noise method. As for the validation early-stopping metrics, using any of
the noise methods only resulted in relatively minor changes compared to the reference model, and no
discernible patterns were observed.

Regarding decoder distributions for raw counts, results were more varied across data sets. For
the PBMC-3k data set, the test ARIs obtained by using discrete probability distributions are mostly
comparable to those of the reference model using standardised counts, except a few being significantly
lower for some early-stopping metrics (Supplementary Figure S23). For the PBMC-8k data set, the
test ARIs of raw-read-count models are mostly higher than the reference values with some being
significantly higher and the remaining being comparable (Supplementary Figure S24). For the PBMC-
10k data set, it depends on the early-stopping metric whether the raw-read-count models performed
better than, worse than, or comparable to the reference model (Supplementary Figure S25). For both
the PBMC-68k and -92k data sets, using discrete probability distributions resulted in test ARIs that
are comparable to or higher than reference model, except in a few cases (Supplementary Figures S26–
S27). In contrast to the discriminator noise methods, using discrete probability distributions did result
in relatively major changes in the early-stopping metrics compared to the reference model for some
data sets, especially in the following cases: When using the autoencoder loss or the Calinski-Harabasz
index for early stopping for all data sets as well as when using the other unsupervised clustering
metrics for some of the data sets. This is to be expected, since these metrics are computed using
the counts. We also note that when using the autoencoder loss for early stopping, the zero-inflated
distributions achieved better results than the standard distributions for all data sets. Additionally, the
negative binomial distributions perform better the Poisson distributions for all data sets, except for
the PBMC-92k data sets for which it is the reverse. Other than those observations, no clear patterns
can be discerned, and none of the data sets or the early-stopping metrics has a preferred decoder
distribution for raw counts.

3.2.2 Early-stopping comparison

Finally, we tested models with combinations of the optimal network architectures, discriminator noise
methods, and decoder distributions found for each early-stopping metric for the PBMC data sets. The
test adjusted rand indices of the optimal model for each early-stopping metric are plotted in Figure 2
for all data sets. Since there is a significant difference between using standardised and raw counts, test
adjusted rand indices for these are plotted separately. For comparison, the performances of scVI and
the baseline method are also included in Figure 2. UMAP embeddings of the latent representations for
the optimal scAAE models using either an unsupervised (scAAE-UC) or a supervised (scAAE-SSC)
clustering metric for early stopping are plotted in Figure 3 for the small data sets and Figure 4 for the
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large data sets. The UMAP embeddings of the standardised counts as well as the latent representation
of scVI are also plotted in these figures.

For the PBMC-3k data set, all optimal models but two are significantly better than the baseline
method and comparable to scVI as seen in Figure 2a. The remaining two still select models higher
than or comparable to the baseline. The optimal scAAE-UC model (and overall model) was found
using standardised counts and DBI for early stopping, and the optimal scAAE-SSC model was also
obtained by using standardised counts, but AMI for early stopping. The latent representations for
these, seen in Figure 3a, both have cell types clustered in a similar manner as the data-set embedding
and the scVI latent representation: one B-cell cluster, one monocyte cluster, and one cluster of T and
NK cells. However, these clusters are more separated for scVI than for scAAE.

For the PBMC-8k data set, all optimal models are better than the baseline method except when
using some of the optimisation metrics or CHI for early stopping and model selection as seen in
Figure 2b. Models using standardised counts and either the silhouette coefficient, DBI, or AMI for
early stopping are significantly better than the baseline and comparable to scVI. Using standardised
counts resulted in the optimal scAAE models. The scAAE-UC model used DBI for early stopping,
and the scAAE-SSC model used AMI, and this one also performed the best of the two. Figure 3b
show the latent representations for these, and the cell types are clustered similarly to the data-set
embedding. For the scVI latent representation, monocytes are separated from a cluster of T and NK
cells, whereas these cell types are close together for scAAE.

For the PBMC-10k data set, only three optimal models are comparable to or higher than the
baseline as seen in Figure 2c: models using standardised counts with the silhouette coefficient, DBI,
or ARI for early stopping. scVI is slightly worse than the baseline. The optimal scAAE-UC model
(and overall scAAE model) was obtained by using standardised counts and silhouette coefficient for
early stopping, and it was better than both the baseline method and scVI. The optimal scAAE-SSC
model also used standardised counts, but ARI for early stopping, and this was only slightly better
on average than the baseline method and scVI. The latent representations for these can be seen in
Figure 3c. They both show cell types clustered in a similar manner as the data-set embedding and
the scVI latent representation.

For the PBMC-68k data set, most optimal models are comparable to the baseline method, which
performs better than scVI, as seen in Figure 2d. Models using raw counts and any of the supervised
clustering metrics for early stopping perform better than the baseline (and scVI). The models per-
forming the worst used either the autoencoder or discriminator loss for early stopping. Using raw
counts yielded the optimal scAAE models. The optimal scAAE-UC model used CHI for early stop-
ping, while the optimal scAAE-SSC model, which also performed the best, used ARI. Also note that
a scAAE model using the generator loss for early stopping performed better than the optimal scAAE-
UC model. Figure 4a shows the latent representations for both. The one for the scAAE-SSC model
have cell types in similar clusters as both the data-set embedding and the scVI latent representation.
They all also show a subdivision of NK cells and of some of the T cells. The latent representation of
the scAAE-UC model show more overlap between cell types and no subdivision of NK or of T cells.

For the PBMC-92k data set, five of the optimal models are comparable to or better than the
baseline method as can be seen in Figure 2e. These models were stopped early using either supervised
clustering metric for both standardised and raw counts as well as CHI for raw counts. The optimal
scAAE models both used raw counts. The optimal scAAE-UC model was stopped early using CHI,
and the scAAE-SSC model was stopped early using ARI and perform the best of the two. The latter
model is also comparable to scVI. The latent representation for both, seen in Figure 4b, have cell
types clustered similarly as the data-set embedding and the scVI latent representation, except that
the NK cells and T cells are not completely separated for the optimal scAAE-UC model.

In addition to using the adjusted rand index for comparison, we also investigated the performance
of the optimal models using the adjusted mutual information (Supplementary Figure S28), and we
found similar results as for the ARI.
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(a) PBMC-3k. (b) PBMC-8k.

(c) PBMC-10k. (d) PBMC-68k.

(e) PBMC-92k.

Fig. 2. The test adjusted rand indices for the optimal scAAE model selected by each early-stopping metric for all
data sets. The performances of the baseline method and scVI are also shown. For the scAAE models and scVI, the
median and the interquartile range for three replicates are visualised.
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(a) PBMC-3k.

(b) PBMC-8k.

(c) PBMC-10k.

Fig. 3. UMAP embeddings of the small PBMC data sets using the standardised gene expression counts as well as
the latent representations of the optimal scAAE-UC model, the optimal scAAE-SSC model, and scVI.

4 Discussion
On the whole, scAAE models performed well on the smallest data sets (SIM-2, SIM-5, and PBMC-3k)
and was comparable to or better than the baseline and scVI. For the mid-sized data sets (SIM-10,
PBMC-8k, and PBMC-10k), scAAE models had more mixed results, but some were still able to best
or equal the baseline and scVI. scAAE models for the largest data sets (PBMC-68k and PBMC-92k)
mostly performed better or comparable to either the baseline, scVI, or both.

To evaluate scAAE, we used the same clustering hyperparameter search for all models and com-
parison methods as well as for all data sets. This performed well on the simulated data sets for most
models. For some models using loss-metric early stopping cell groups were subdivided into multiple
clusters because the models were stopped at a time where the extent of the hyperparameter search
were insufficient. Finding potential subclusters are, however, more advantageous than multiple cell
groups forming one cluster. This was the case for a few models when using any of the unsupervised
clustering metrics for early stopping. These were not instances of mode collapse of the model, since
the model recovered using other early-stopping metrics. Rather, this is simply a disadvantage of using
an unsupervised clustering metric for early stopping, resulting in the models being stopped too early.

It is more difficult to evaluate the clustering hyperparameter search on the PBMC data sets, since
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(a) PBMC-68k.

(b) PBMC-92k.

Fig. 4. UMAP embeddings of the large PBMC data sets using the standardised gene expression counts as well as
the latent representations of the optimal scAAE-UC model, the optimal scAAE-SSC model, and scVI.

many of the cell types intermix. We did attempt to mitigate stopping too early for the early-stopping
comparison by evaluating clustering metrics every epoch, requiring more epochs with no improvement
before stopping, and delaying evaluation at the start of training (see §2.7). One can, however, still
observe monocytes and T cells intermixing to a smaller extent for the optimal scAAE-UC model for
the PBMC-68k and -92k data sets, whereas both the optimal scAAE-SSC model and scVI were able
to better separate these cell types. A similar observation can be made for the PBMC-10k data set,
but here neither of the optimal scAAE models is able to separate monocytes and T cells completely.
This minor intermixing can also be seen in the data set itself, indicating that separating the cell
types would be more difficult than for other data sets. However, scVI is able to separate the cell types
completely. We also observed a difference in the general performance of the clustering hyperparameter
search between the small PBMC data sets and the large ones. This is partly because the small data
sets were clustered using either Louvain or Leiden clustering, which was also used in the clustering
search, while the large data sets used other methods (see §2.9) Another reason is that more T cell
subsets have been identified in the large data sets than in the small ones. These subsets overlap in
expression making it more difficult to cluster them.

We also tested scAAE with different model configurations. Regarding the architecture of the
model, small and mid-sized network architectures were preferred in most cases, and deeper discrim-
inator networks generally improved overall performance, which advocate for more network layers
over larger network layers. Additionally, data sets with more distinct cell types (for example, the
PBMC-10k data set), favour models with higher-dimensional latent representations, which makes
sense because of the increased complexity in representing the different cells. As for adding noise to
the discriminator during training, using any of the noise methods improved results for all the mid-
sized data sets for all or most early-stopping metrics. No improvement was observed for the smaller
simulated data sets for which models had already achieved perfect clusterings, and most noise meth-
ods resulted in only minor improvements for the PBMC-3k data set. There was also no significant
improvement for the larger data sets. One would assume that because of their size, these large data
sets already are sufficiently noisy. Modelling raw gene expression counts and using discrete proba-

15



bility distributions for the decoder, however, proved better for the larger data sets. Modelling these
data sets seems to benefit from the library size of individual cells, since the difference in library size
is removed when normalising scRNA-seq data. However, no clear preference for a specific discrete
probability distribution emerged, except when stopping early the autoencoder loss for PBMC data
sets. In that case, the zero-inflated negative binomial distribution performed the best for all PBMC
data set, except for the PBMC-92k data set for which the zero-inflated Poisson distribution attained
the best autoencoder loss. For smaller data sets, the performance is comparable to or worse than
using standardised gene expression counts. This may be because too much noise is included when
modelling these with raw counts, or simply because of the difference in how the reference clustering
was determined. However, the larger variability between cells is also reflected in the performance of
the raw-read-count models: The performance of the replicates of these models vary more, in general,
than when using standardised counts.

Comparing the different early-stopping metrics, the optimisation losses performed the worst in
general. This was to be expected based on previous research on generative adversarial networks
as mentioned in §2.7. One notable exception is an optimal model using a generator loss for early
stopping achieving a better ARI than the optimal scAAE-UC model for the PBMC-68k data set.
Since optimal models with generator-loss early stopping generally performed comparatively well on
the large PBMC data sets, this could because of their size or because of how the reference clustering
was created, which were different processes than for the smaller PBMC data sets. We also saw that
a more optimal autoencoder loss leads to a less optimal test ARI or AMI, only enforcing why other
metrics should be used for early stopping to prevent mode collapse. The clustering metrics we have
tested as alternatives generally performed better than the optimisation losses with the supervised
metrics outperforming the unsupervised ones on average, especially for the larger data sets. This is
also unsurprising, since the clusters are compared to the actual cell types instead of the data itself.
For the larger data sets, the results using the generator loss are comparable to using the unsupervised
clustering metrics. This may be because clustering metrics and generator losses all evaluate how good
the latent representation is, whereas the autoencoder and discriminator losses evaluates other aspects
of the method. The only exception is for the PBMC-3k data set, where almost all configurations
performed very well and at the same level as scVI, which speaks more to limits of modelling this data
set using scAAE and scVI. The best overall early-stopping metrics were the Davies-Bouldin index for
unsupervised models and adjusted mutual information for the semi-supervised models.

The optimal scAAE model for each PBMC data set were stopped after fewer epochs than a scVI
model with similar network architecture, except for the PBMC-3k data set. However, the autoencoder,
the discriminator, and the generator of the scAAE are optimised separately in each epoch, whereas
scVI optimises its model weights only once. Moreover, when using clustering metrics for early stopping,
the latent representation is also clustered multiple times after each epoch. This results in scAAE being
slower to run than scVI.

As for scaling, since scAAE is optimised using a stochastic-gradient-descent algorithm, it scales
well to large amounts of cells. However, performing clustering on a validation set during training –
even when using RAPIDS for GPU acceleration – limits the validation set to around 25 000 cells for
reasonable runtimes on modern hardware in our experience.

5 Conclusion
We show that adversarial autoencoders work perfectly on simulated data in almost all cases, especially
when using clustering metrics for early stopping. We also show that AAEs work as good if not better
than scVI on real-life data, especially when using supervised clustering metrics for early stopping.
However, whereas scAAE fairs better when clustering latent representations in some cases, scVI
usually obtains more visually separated latent representations. This agrees with the assertion that
latent representations produced by AAEs more fully follow the latent representation than those by
VAEs (see §2.5 and Makhzani et al. (2016)). To achieve more separation, we could investigate using
a mixture model as the latent distribution for the AAE.
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Since generative adversarial networks are difficult to train, we also demonstrate techniques to
alleviate this problem. Adding noise to the discriminator helps in cases where data sets are not
simple enough to easily cluster or not complex enough to include sufficient noise or variation on their
own. One source of variation comes from using raw gene expression counts instead of log-normalised,
standardised ones, and modelling these also improves the performance for larger data sets generally.
We also show that early stopping is critical to obtaining a good latent representation of the data,
and that using the optimisation losses of the AAE is inferior to using clustering metrics, especially
for larger data sets. Additionally, we find that deeper mid-sized model architectures perform better
than shallower larger ones, but that the dimension of the latent representation should still be large
enough to represent the different cell types in a particular data sets.

Our objective was to investigate how AAEs can resolve scRNA-seq data and compare clusterings
with ground truths, and we did not aim to resolve clusters further or improve the clustering methods
themselves. As such, we did not perform extensive parameter tuning for this purpose. However, this
should be done with any method, if the purpose is to find more clusters.

We have two main ideas on how to improve this method. One is to integrate the clustering into
the model. Makhzani et al. (2016) demonstrate a way to do this with a fixed number of clusters, but
we would like to investigate how network-based clustering methods such as the Louvain and Leiden
methods would perform. The other is to optimise the autoencoder and generator losses together, since
they (partly) update the same model weights. Both of these changes would allow the model to take
more information into account when updating the weights to improve the performance, and to reduce
the number of optimisation steps each epoch to speed up the training. This would also allow the
method to cluster larger validation sets during training, since it would be clustering minibatches. The
discriminator should, however, still be optimised separately to maintain the adversarial framework.
Another way to speed up the training would be to model the latent representations deterministically
as output of the encoder instead of modelling the parameters of an encoder distribution and sampling
this distribution as mentioned in Makhzani et al. (2016).
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S1 Supplementary Tables

Table S1. Sources for scRNA-seq gene expression data sets. The PBMC-92k data set has been compiled from
cell-type-specific data sets, so sources for each of these are listed.

Data set Cell type Sourcea

PBMC-3k — 3-k-pbm-cs-from-a-healthy-donor-1-standard-1-1-0

PBMC-8k — 8-k-pbm-cs-from-a-healthy-donor-2-standard-2-1-0

PBMC-10k — 10-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-

3-standard-3-0-0

PBMC-68kb — fresh-68-k-pbm-cs-donor-a-1-standard-1-1-0

PBMC-92k CD8+ cd-8-plus-cytotoxic-t-cells-1-standard-1-1-0

PBMC-92k CD8+/CD45RA+ cd-8-plus-cd-45-r-aplus-naive-cytotoxic-t-cells-

1-standard-1-1-0

PBMC-92k CD56+ cd-56-plus-natural-killer-cells-1-standard-1-1-0

PBMC-92k CD4+ cd-4-plus-helper-t-cells-1-standard-1-1-0

PBMC-92k CD4+/CD45RO+ cd-4-plus-cd-45-r-oplus-memory-t-cells-1-

standard-1-1-0

PBMC-92k CD4+/CD45RA+/
CD25−

cd-4-plus-cd-45-r-aplus-cd-25-naive-t-cells-1-

standard-1-1-0

PBMC-92k CD4+/CD25+ cd-4-plus-cd-25-plus-regulatory-t-cells-1-

standard-1-1-0

PBMC-92k CD34+ cd-34-plus-cells-1-standard-1-1-0

PBMC-92k CD19+ cd-19-plus-b-cells-1-standard-1-1-0

a Prepend https://www.10xgenomics.com/resources/datasets/.
b The source for the cell-type annotation is available at https://github.com/10XGenomics/single-cell-3prime-
paper.

1



Table S2. Reference clustering details for PBMC data sets with no author-annotated clusters or cell-type labels.

Data set Resolution

Louvain method Leiden method

PBMC-3k 1.0 —
PBMC-8k 0.7 —
PBMC-10k 0.6 0.6

Table S3. Values investigated for the dimension ℓ of the latent variable as well as for the architecture of the deep
neural networks of the encoder, the decoder, and the discriminator. The encoder has networks with two layers with
H1 in the first one and H2 in the second one, and the networks in the decoder has the reverse architecture. The
discriminator has networks with two to five layers with layer k having Hk units. For each row, four experiments is
run with an increasing number of layers for the discriminator networks. The standard network architecture (with
only two-layer discriminator networks) uses the values in bold.

ℓ H1 H2 H3 H4 H5

10 100 50 25 12 6
10 250 125 62 31 16
10 500 250 125 62 31
25 100 50 25 12 6
25 250 125 62 31 16
25 500 250 125 62 31
50 100 50 25 12 6
50 250 125 62 31 16
50 500 250 125 62 31

Table S4. Hyperparameter values investigated for the discriminator noise methods. The instance noise standard
deviation is also decayed with a rate of 0.99.

Level Flipping rate Smoothing scale Noise standard deviation
r s d

Low 0.1 0.1 0.05
High 0.5 0.3 0.2

Table S5. Hyperparameter values investigated for clustering using the Louvain and Leiden methods. All values are
used for configuration searches, and only bolded values are used early stopping.

Resolution Neighbourhood size

0.4 5
0.6 10
0.8 15
1.0 20
1.2 25
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Table S6. Training and evaluation options for each data set.

Configuration search Early stopping

Data set Epoch count Clustering interval Patience Delay

SIM-2 200 20 — —
SIM-5 200 20 — —
SIM-10 200 20 — —
PBMC-3k 200 20 25 10
PBMC-8k 200 20 25 10
PBMC-10k 200 20 25 10
PBMC-68k 50 10 25 1
PBMC-92k 25 5 25 1
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(a)

(b)

Fig. S1. Model graphs of (a) the adversarial autoencoder and (b) the variational autoencoder. Circles represent
variables that are observed (dark grey), reconstructed (light grey), and latent (white). The rhombi symbolise
deterministic variables such as the distribution parameters. The black rectangles denote neural networks, and arrow
indicate input and output.
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(a) SIM-2.

(b) SIM-5.

(c) SIM-10.

Fig. S2. UMAP embeddings of the test sets of the simulated data sets. The embeddings to the left use the
standardised gene expression counts, and the embedding to the right use the latent representations of the reference
model at the optimal validation autoencoder loss.
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Fig. S3. Network-architecture search for the SIM-2 data set using different metrics for early stopping. For each
early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S4. Network-architecture search for the SIM-5 data set using different metrics for early stopping. For each
early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S5. Network-architecture search for the SIM-10 data set using different metrics for early stopping. For each
early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S6. Discriminator-noise-method search for the SIM-2 data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S7. Discriminator-noise-method search for the SIM-5 data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S8. Discriminator-noise-method search for the SIM-10 data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S9. Decoder-distribution search for the SIM-2 data set using different metrics for early stopping. For each
early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S10. Decoder-distribution search for the SIM-5 data set using different metrics for early stopping. For each
early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S11. Decoder-distribution search for the SIM-10 data set using different metrics for early stopping. For each
early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.

15



(a) Network architecture, SIM-2. (b) Network architecture, SIM-5. (c) Network architecture, SIM-10.

(d) Decoder distribution, SIM-2. (e) Decoder distribution, SIM-5. (f) Decoder distribution, SIM-10.

Fig. S12. UMAP embeddings of the latent representation of the simulated data sets for some models achieving a
test adjusted rand index less than the baseline method. For each of the simulated data sets, an unsuccessful latent
representation is shown for both the network-architecture search and the decoder-distribution search.
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Fig. S13. Network-architecture search for the PBMC-3k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S14. Network-architecture search for the PBMC-8k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.

18



Fig. S15. Network-architecture search for the PBMC-10k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S16. Network-architecture search for the PBMC-68k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S17. Network-architecture search for the PBMC-92k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S18. Discriminator-noise-method search for the PBMC-3k data set using different metrics for early stopping.
For each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for
the median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S19. Discriminator-noise-method search for the PBMC-8k data set using different metrics for early stopping.
For each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for
the median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S20. Discriminator-noise-method search for the PBMC-10k data set using different metrics for early stopping.
For each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for
the median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S21. Discriminator-noise-method search for the PBMC-68k data set using different metrics for early stopping.
For each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for
the median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S22. Discriminator-noise-method search for the PBMC-92k data set using different metrics for early stopping.
For each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for
the median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S23. Decoder-distribution search for the PBMC-3k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S24. Decoder-distribution search for the PBMC-8k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S25. Decoder-distribution search for the PBMC-10k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S26. Decoder-distribution search for the PBMC-68k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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Fig. S27. Decoder-distribution search for the PBMC-92k data set using different metrics for early stopping. For
each early-stopping metric, the test adjusted rand index is plotted against that particular validation metric for the
median-performing run for all models included in the search. All validation metric axes are oriented such that
optimal values are towards the right.
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(a) PBMC-3k. (b) PBMC-8k.

(c) PBMC-10k. (d) PBMC-68k.

(e) PBMC-92k.

Fig. S28. The test adjusted mutual information for the optimal scAAE model selected by each early-stopping
metric for all data sets. The performance of the baseline method and scVI is shown. For the scAAE models and
scVI, the median and the interquartile range for three replicates is shown.
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